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Abstract
Many consumer devices, such as portable game consoles or cell-
phones, can be described as battery-powered wireless embedded
devices. Many of these are not taking advantage of virtual ma-
chines, certainly not for their core tasks, instead relying on C or
close derivatives for implementing their behaviour. However, faced
with software that becomes more and more dynamic and hardware
that is increasingly heterogeneous, the move to virtual machines
is as necessary as it is unavoidable. From our own experience in
developing software for battery-powered embedded devices we de-
scribe features that these upcoming virtual machines should pos-
sess in order to win over the embedded crowd and be a viable com-
petitor against C, not just the only viable option.

1. Opening Remark
This paper will not advance the state-of-the-art in virtual machine
research. Instead it sketches the domain of embedded systems de-
velopment where virtual machines are sorely needed but do not
seem to be catching on yet. In this paper we enumerate what we
think are some reasons why this is the case, without handing any
solutions at the time. We think this can be of interest to the VMIL
workshop, given the fact that virtual machine research is looking
into embedded devices (see for example the invited talk on the
Maxine virtual machine). We feel, however, that these efforts are
not yet ready to replace the entire embedded device development.
Our position statement is that embedded software development, es-
pecially for battery-powered mobile devices, will embrace virtual
machines when these virtual machines are modularized, allow de-
velopers to take advantage of hardware features, and offer intro-
spective and optimization possibilities.

2. Introduction
We are moving towards a world where very heterogeneous devices
are connected — ranging from miniature to big, from mobile to
tethered: servers, mobile terminals, wireless sensors, wearable and
implanted devices. Todays systems support ever more demanding
software applications, and require the addition of more and more
heterogeneous hardware resources to continue to meet these de-
mands. The recent trend of GPU accelerated software in the desk-
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top and server world illustrate this trend. In battery-powered em-
bedded devices it has been a trend for longer, and the platforms are
much more diversified and ‘exotic’, with many being built just for
one device. When needed, chips are customized in order to meet
performance, power consumption or space requirements.

One of the net results of this is that many chips are only pro-
grammable in assembly language. It is for a reason that develop-
ers of these devices call C a high-level language, and feel spoiled
when a C compiler for their system exists. There certainly is room
for virtual machines (see (Neuvo 2004) that discusses the roles for
a Java virtual machine on Nokia cellphones), for the same reasons
that virtual machines are nowadays underpinning most industrially-
relevant programming languages used in the desktop and server
space. The catch is that these virtual machines need to make sure
that the software they run adheres to various non-functional re-
quirements such as energy consumption, quality of service, and
performance.

Constructing virtual machines that allow this is a huge chal-
lenge, encompassing engineering issues (execute applications ef-
ficiently and not consume too much power), software engineering
issues (the virtual machine should be pluggable in order to be cus-
tomizable with respect to the hardware), programming language
issues (what language mechanisms are needed that are amenable
for optimized execution on different platforms, controllable by the
developer and still high-level), compiler issues, runtime issues, etc.

IMEC has done research in software development for battery-
powered wireless embedded devices for quite some time. From
this experience the rest of this paper describes some features that
we think are an absolute necessity in order for virtual machines to
be a viable alternative to low-level compiled languages to program
battery-powered embedded devices.

We have bundled the desired features in the following groups:

• Hardware connection: links between the virtual machine and
the hardware.

• Modularization: modular virtual machines are needed to adapt
them to various hardware platforms or reconfigure them at
runtime.

• Introspection and optimization: multi-criteria optimization (e.g.
trade of performance vs. energy consumption) possibilities.

• Adaptation: runtime adaptation according to the execution con-
text.

Before we go into detail the following section gives some de-
tails about the development issues a current developer faces when
developing software for a battery-powered embedded device.



3. Battery-Powered Embedded Device
Characteristics

Battery-powered embedded devices share a number of hardware
and software characteristics, whether they are camera’s, PDA’s,
cellphones or portable game consoles.

power and energy The dominant hardware characteristic are
power and energy constraints, that are tied to the fact that these
devices are battery powered(van Berkel 2009). As a result, every-
thing, hardware and software alike, is done in order to reduce en-
ergy consumption. The obvious goal is to make sure the device
can be used for a long time in between charging. However energy
consumption is also linked to heat dissipation. Since many of these
devices are handheld devices, they simply cannot become too hot to
touch. An energy dissipation smaller than 3W is required. Other de-
vices, like audio and video equipment, tries to be passively cooled
as much as possible. Controlling energy consumption is key for
controlling the amount of heat generated.

area Another important characteristic is physical space (area).
Consider a high-end cellphone. It should be able to record high-
definition video, integrate various wireless network standards, have
the possibility to play back all kinds of media formats, play 3D
games, and incorporate motion sensors and a GPS. Of course it
also comes with many software applications, to make phone calls,
instant message friends, integrate with the calendar and e-mail
systems at work, etc. Ideally, to consume the least amount of energy
possible, dedicated chips for many of these functionalities could be
integrated, such as a dedicated Bluetooth chip, 3D gaming chip,
sound chip, etc. However all of these chips require physical space,
which is simply not possible unless people suddenly feel inclined to
run around with a cellphone resembling the first-generation models.
The result is that a choice has to be made to use less-specialized but
programmable chips for some of these functionalities, even though
they are generally less optimized.

heterogeneous platforms Another characteristic is the fact that
many different types of processing elements are typically needed
(heterogeneous platforms) to achieve the required combination of
performance and power consumption characteristics (Neuvo 2004).
It is very common to develop code that not only uses a CPU, but
takes advantage of a dedicated video accelerator chip, as well as a
DSP for the audio. Take into account the fact that all of these chips
typically have various power optimization features that need to be
controlled (so-called hardware knobs), and the complexity of even
getting an application to run becomes clear.

Partly resulting from these hardware characteristics there are also
a number of software challenges.

real-time constraints A first software characteristic that many
people think about when they hear embedded software are real-
time constraints. Indeed, playing video on a device or adhering to
wireless networking standards requires timely execution of tasks.
Missed deadlines have an impact on the quality of experience of the
user (bad network connections or hickups when watching video), or
can have life-threatening effects, for example in healthcare applica-
tions.

optimization A second software characteristic is optimization,
which actually goes hand in hand with real-time constraints. While
users require advanced functionality of devices, on par with their
home PC, the raw computational power and memory are simply not
available on these devices. As a result clever coding and optimiza-
tions are necessary. Embedded software developers are typically
experts in profiling, as well as in deeply understanding the hard-
ware they are using in order to squeeze the last cycle out of their

processing element or efficiently use a particular memory element.
While a software developer might think in terms of objects placed
in memory, an embedded developer will think of a number of bytes
placed in a certain part of the memory hierarchy, and will consider
the other parts of this hierarchy (registers, level 1 cache, level 2
cache, SD ram, etc.), their connections (32-bit wide bus with par-
ticular bandwidths, for example, or a network-on-chip (Dally and
Towles 2001) that needs to be configured) and energy consumption
(the cost for moving a number of bytes from SD ram to the level 2
cache). Likewise an embedded device developer will need to take
the voltage of the CPU into account when developing.

Embedded software development therefore becomes plagued
with making trade-offs such as: will we run this piece of code
on the DSP, running it at 200 Mhz, or will we run it on the
CPU at full speed. The goal is to find the best assignment and
scheduling which minimizes the energy consumed to execute the
given set of tasks while satisfying timing, precedence and resource
constraints of all (sub-)tasks. In the end this boils down to multi-
criteria optimization, primarily taking into account the execution
times (in order to be able to comply with the real-time constraints)
and energy consumption (to not deplete the battery too quickly).

The process of deciding which functionality will run where and
with what characteristics is called task mapping. Developers typ-
ically make several possible task mappings in order to find the
best one. However, this mapping process takes a lot of time be-
cause each time optimized software needs to be built. Typically this
means that a software decomposition is needed such that the result-
ing parts can be run on different processing elements in parallel.
Consider for example a video decoder. It can either run completely
on a single core of a CPU, or it can be threaded to take advantage
of two cores, or it can be split in even more parts that are run on
several cores and accelerators. All of these implementations typi-
cally require different data structures and implementations. Trying
out a different mapping therefore boils down to reimplementing
significant portions of the application. Different mappings are then
compared by running and profiling them with test data. This means
that the mappings are optimized to process particular runtime sce-
nario’s that the developers predicts are likely to occur.

Developers do not have a lot of support to help them with
the task mapping problem, apart from experience and profiling
tools. There is ongoing research to help with this problem, such as
Task Concurrency Management (TCM). TCM (Yang et al. 2001;
Wong et al. 2001) is a methodology which balances the resource
utilization, performance, and resource manager complexity with
a two phase approach (design-time and run-time). TCM helps in
finding a good decomposition and balances the resource utilization,
performance, and resource manager complexity. To achieve this it
uses a two phase approach (design-time and run-time) to select the
right granularity of task model in each phase and do the resource
management. We are currently in the process to address a main
problem in TCM, which is that it does not take shared interconnect
resources into account (the bus or network-on-chip (Dally and
Towles 2001)) that are used to transfer data between processing
elements.

4. VM Features Most Wanted
Given the shortening time to markets and the continuously increas-
ing software complexity, developers need to make trade-offs be-
tween the quality of the solution they can deliver and the time and
cost for making this solution. It goes without saying that developing
everything in assembly language and C for the complicated devel-
opment issues raised above, is not a very productive process and
requires very skilled and experienced people.

Virtual machines can be an answer to these problems, in the
same way that they are being used in mainstream development.



However, just porting a virtual machine to a smaller device by lim-
iting its memory footprint will not solve the problems we showed in
the previous section. Embedded developers are then simply unable
to take advantage of virtual machines and will need to continue to
develop in C and assembly instead.

In this section we describe the low-level features we feel that
virtual machines have to embrace in order to capture the minds and
hearts of embedded software developers. We have not dealt with
all issues, such as looking into the programming language aspects,
but have focussed on features that have to do with mapping and
optimization.

4.1 Hardware Connection
Processing Elements The virtual machine should make it pos-
sible to use several hardware processing elements. Most existing
virtual machines do not allow this, not even for homegeneous pro-
cessing elements like multicore CPUs. It should be possible to ex-
ecute one program on the VM that is then executed on one or more
different processing elements.

A number of research projects are looking into virtual machines
that take advantage of manycore hardware. All the research we
found experiment with the Tilera64 processor, a manycore chip
with 64 cores. The Renaissance project by David Ungar and Sam
Adams proposes a virtual machine able to use 56 of the 64 Tilera
cores1. We also found work of Stefan Marr on adding concurrency
support in instruction sets of virtual machines(Marr et al. 2009).
There is also rumors of an Erlang port on the Tilera642. Intel’s Tera-
Scale environment, that is talking about tens of thousands of cores,
is also going to require virtualization and software that can take
advantage of multiple cores3.

While the Tilera64 chip (let alone the Tera-scale project) is
not directly usable in portable embedded devices, advances with
these homogeneous systems will eventually trickle down to the
embedded processor market, where current offerings are already
multicore. The ARM11 MPCore, for example, can be configured
to have between 1 and 4 cores4.

This still leaves our initial request open, however, which talked
about heterogeneous processing elements, such as CPU’s, GPU’s,
and accelerators. For example, in the world of cellphones the max-
imum power dissipation combined with a demand for ever more
demanding tasks imply that heterogeneous platforms have to be
used (Neuvo 2004; van Berkel 2009). This can be seen in the re-
lease of ever more capable multi-processor system-on-chip solu-
tions, such as NVidia’s Tegra platform5, that sports an ARM11
CPU, a Geforce GPU, an Image Processor, a HD Video Processor,
as well as the memory controller and other infrastructure. Ideally,
virtual machines should be able to virtualize the major capabilities
of such a heterogeneous setup, which would also benefit desktop
and server systems where there is much talk about GPU-accelerated
software.

Note that OpenCL is going in that direction, but not far enough.
OpenCL makes it possible to write a kernel that can be executed
on CPU, GPU and other types of processing elements such as
DSPs. This is enabled through virtual machines, where for exam-
ple NVidia provides a VM for their GPUs as part of their toolkit,
similarly to ATI/AMD and Apple. Initially released for desktop ma-

1 http://domino.watson.ibm.com/comm/research.nsf/pages/r.
plansoft.seminars.html
2 http://erlang.org/faq/implementations.html, section 8.4
3 http://techresearch.intel.com/articles/Tera-Scale/1421.
htm
4 http://www.arm.com/products/CPUs/
ARM11MPCoreMultiprocessor.html
5 http://www.nvidia.com/page/handheld.html

chines, for example in Apple’s latest Snow Leopard version of the
OS-X operating system, there are indications that at least one ma-
jor vendor of mobile graphic chips is working on OpenCL sup-
port6. While OpenCL makes it possible to execute the same kernel
on multiple processing elements (the ”write once run everywhere”
mantra we all dearly love), the kernel is different from the host
language that sets up the necessary memory, decides where to run
the kernel, launch it and read back the results. The VMs for the pro-
cessing elements are also different. Better would be to have a single
integrated VM encapsulating all of these processing elements and
managing them.

Adaptive runtime resource management technology we are
working on could be the basis for this. It dynamically assigns soft-
ware tasks to heterogeneous processing elements and adapts itself
to various runtime situations, maximizing the usage of the process-
ing elements. We have implemented an adaptive runtime resource
manager for a server platform consisting of CPU’s and GPU’s. Ini-
tial experiments show that it is able to improve the average execu-
tion performance of a multimedia application by up to 30 percent
compared with non-runtime managed solutions. We feel this this
could be a good candidate to use in a virtual machine for future
embedded platforms.

Memory Besides managing processing elements, there should be
control over the memory hierarchy, to give a developer fine grained
control on what memory is used. This is a difficult subject that has
many programming language implications, but is certainly needed.

The reason we think it is needed is that in the past we have
managed to reduce power consumption of applications by care-
fully optimizing the way the memory hierarchy is used. We even
have developed a toolset and a methodology in order to let devel-
opers optimize their embedded applications, parallelize them, or do
both (Mignolet and Wuyts 2009). Key to the approach is that it an-
alyzes the source code, does time and energy profiling, and uses a
model to explore different ways of managing the data, for example
deciding to copy part of a larger datastructure that resides in one
part of the memory hierarchy (say, level 2 cache) to another part of
the memory hierarchy (say, a level 1 cache), and process it there.
The code is then rewritten so that the appropriate data transfers are
done and the loops work on the right data.

Recently this tool was used to manage scratch-pad memories
(fast memories close to a processing element and under full control
of the developer). A case study applying this tool on an MPEG-
4 video encoder showed an overall power reduction of 25%, a
40% power reduction in just the memories and a 40% reduction
in processor cycles as compared to an optimized hardware-cache
based solution (Baert et al. 2008).

This technology hinges on one very important assumption: it is
assumed that the application (or set of applications) that are being
optimized are the only ones that are running. While this assump-
tion is still valid for a number of embedded applications and can
be slightly relaxed (for example by guaranteeing that part of the
complete hardware resources are available to that optimized appli-
cation), it is no longer true for many embedded devices, especially
ones that are consumer-oriented. Ideas from this research can there-
fore be used but have to be adapted to cope with an open world
where many applications are executing alongside.

4.2 Modularized Virtual Machines
The virtual machine should be modularized, because it needs to
be able to support various kinds of hardware. Monolithic virtual
machines that need to be rewritten for every minor change in
hardware are not economically feasible, given the rapid changing

6 http://www.maclife.com/article/news/opencl may be
coming iphone near you
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hardware. There are several attempts at building virtual machines
at a higher level of abstraction. Some projects that interest us are
for example:

• Jikes RVM(Alpern et al. 2000) and Squawk7 are Java virtual
machines written in Java.

• PyPy (Rigo and Pedroni 2006) is a Python virtual machine
written in Python. The programmer is only required to provide
an interpreter in a typeable subset of Python. A toolchain takes
this as input and transforms it to a back-end language (such as
C or Java), automatically adds a memory manager and even a
JIT compiler. The advantage is that this is a high-level approach
to build VMs, but on the other hand the programmer can only
configure the VM for as much as is supported by the toolchain.

• Mate (Levis and Culler 2002) is a tailorable virtual machine
specifically for sensor networks based on TinyOS(Gay et al.
2003). It can be tailored in its instruction set, which allows
adding up to 8 custom instructions. Furthermore, the virtual
machine can be configured to what primitives it supports (e.g.
square root) and to what events it reacts (e.g. a timer, receiving
of a packet, etc). However, since TinyOS is based on static me-
mory allocation, Mate has no provisions for dynamic memory.

We are interested at taking any of these approaches and try-
ing to replace some of the VM constituents by device- or even
application-specific modules. A memory management module, for
example, could be optimized to take advantage of a particular me-
mory layout (e.g. a scratchpad memory of a particular size), reusing
some of the research we have done at IMEC and described before.
The goal is not to start every module from scratch. Rather, exist-
ing general purpose modules should be refined. This will require
some fine-grained composition technology such as aspect-oriented
programming or traits (Ducasse et al. 2006).

A composition engine can then compose the modules to make
virtual machines for particular platforms, as shown in (Marr 2008).

4.3 Two-way Introspection and Optimization
The virtual machine should make it possible for applications to
get information on what the virtual machine is doing and what re-
sources it is using. The reason is that software can use this infor-
mation for optimizations that are application-specific. For example,
when the application is a scalable video codec, that has different
quality options it can select from, what quality to show the user can
depend on user preference (which is information locally available
to the application) or on current platform load (which is informa-
tion that should be obtainable through the VM).

Moreover the virtual machine itself should get information
about the software it is currently executing, besides the actual byte-
codes. The reason is that the virtual machine itself can do opti-
mizations that transcend single applications. Take for example a
componentized application that does video processing, where some
components can be executed on either CPU or GPU. Depending on
the current load and execution context the virtual machine could
then assign the component to either GPU or CPU. The application
itself cannot necessarily do this because it does not have enough
information. Note that another possibility is to make this informa-
tion available to the application component, like discussed before,
in which case it can make this decision itself.

4.4 Adaptation
We can extend the introspection into reflective features where the
VM adapts its workings based on the application it is executing.
For example, the garbage collector module could be tuned to suit
the applications that is currently executing, which is basically re-

7 http://research.sun.com/projects/squawk/squawk-rjvm.html

configuring an internal part of the virtual machine. Even further we
could replace entire modules of the virtual machine, for example
replacing one garbage collector with another one or replacing the
scheduler. This requires the virtual machine to monitor its own ex-
ecution and adapt accordingly.

5. Conclusion
We are not virtual machine experts. We do have experience with
writing code for battery-powered embedded devices, where C and
assembly are used as development platforms and virtual machines
do not seem to be making much progress. In this paper we try to
outline some issues embedded developers currently face that do not
seem to be addressed by virtual machines. Can virtual machines
rise up to the challenges outlined here ?
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