Composing Aspects with Aspects

Antoine Marot*
Université Libre de Bruxelles
Brussels, Belgium

amarot@ulb.ac.be

ABSTRACT

Aspect-oriented programming languages modularize cross-
cutting concerns by separating the concerns from a base
program in aspects. What they do not modularize well is
the code needed to manage interactions between the aspects
themselves. Therefore aspects cannot always be composed
with other aspects without requiring invasive modifications.
This paper proposes a join point model that makes it possi-
ble to express aspect composition itself as an aspect, liber-
ating the composed aspects from composition-specific code.
We have implemented this new join point model in our
OARTA language, an extension of AspeEcTJ, and we show
how to use it to write aspects that manage aspect interac-
tions.

Categories and Subject Descriptors

D.3.3 [Programming Languages|: Language Constructs
and Feature—Classes and Objects

General Terms

Languages

Keywords

Aspect composition, Aspect interaction, Crosscutting con-
cern, Semantic interference

1. INTRODUCTION

Aspect-oriented programming (AOP) is a programming
paradigm to modularize crosscutting concerns. The con-
cerns are specified in modules called aspects and are com-
posed with a base system during a process called weaving.

AQOP has proven to be good way to modularize concerns
that crosscut the base code. Unfortunately aspects that were
not designed from the ground up to collaborate often conflict

*Research Fellow of the Fond National de la Recherche Sci-
entifique (FNRS-FRS)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AOSD’10 March 15-19, Rennes and St. Malo, France

Copyright 2010 ACM 978-1-60558-958-9/10/03 ...$10.00.

Roel Wuyts
IMEC and KULeuven
Leuven, Belgium

roel.wuyts@imec.be

when used together. For example it is known that semantic
interferences can occur when using an aspect for encrypt-
ing information in combination with an aspect that finds
and removes inappropriate words in a text [1]. In order to
avoid semantic interferences, the conflictual aspect interac-
tions need to be managed.

Aspect interference is a practical problem and therefore
several techniques were developed to help with detecting as-
pect interactions. However, few techniques exist to then
manage the interactions to remove the conflicts and obtain
the desired behaviour. The state-of-the-art solutions boil
down to the following two non-optimal solutions:

e use precedence rules between the aspects that are be-
ing composed. The advantage is that the precedence is
given by the composer of the system without needing
to change the composed aspects. The disadvantage is
that the composition is coarse-grained and limited be-
cause it means that one aspect will always take prece-
dence over another aspect, which does not fit all usage
scenarios. Moreover, several kinds of interactions are
not related to the ordering of the aspects.

e destructively change the aspects to make them aware
of each other. This solution makes it possible to have
a fine-grained composition but implies that all aspects
that participate in the composition are modified. While
the aspects are therefore separated from the base code,
they are no longer separated from each other and can-
not be used in other usage scenarios.

This paper explores a novel way for managing aspect in-
teractions by empowering aspects to express aspect compo-
sitions. This makes it possible to manage aspect interactions
outside of the aspects themselves, liberating the composed
aspects from any composition-specific code.

The contribution of this paper is composed of three parts:

e We identify the lack of support to modularize compo-
sition concerns that crosscut aspects and motivate the
need for aspects to compose aspects.

e We propose the following AO language features to ex-
press aspect composition aspects: named advices to
precisely identify advices, advice patterns to quantify
over advices, foreign pointcut modifications to extend
existing pointcuts, weaving orderings specified at the
advice level using the advice patterns, and user-defined
instantiation policies for foreign aspects. Our proposi-
tion encompasses different AOP language models, fea-
tures and capabilities.

e We extend ASPECTJ with these features. The language
extension (called OARTA') has been implemented using
the extensible AspectBench Compiler (ABC) [4].

To validate the usefulness of aspects to compose aspects
we show how to use OARTA to implement several scenarios
of composition concerns.

The remainder of the paper is structured as follows: Sec.
2 shows the kinds of problematic interactions that can occur
when aspects are composed and lists the invasive modifica-
tions needed to make the compositions possible. Sec. 3
describes the features we propose that empowers aspects to
express aspect compositions. Sec. 4 presents OARTA and
evaluates it on several examples. Sec. 5 provides a discus-
sion while Sec. 6 discusses related work. Finally, Sec. 7
concludes the paper.

2. INVASIVE ASPECT COMPOSITION

It is well-known that aspects that coexist in an applica-
tion may badly interact with each other and cause unwanted
interference that needs to be taken care of. This can cur-
rently be done in two unsatisfactory ways. The first is by
giving explicit precedence relationships between the aspect
at composition time. Unfortunately not all interactions are
related to the execution order, and a precedence relation
alone is therefore not sufficient to handle all possible interac-
tion problems. The second option currently is to invasively
modify the aspects that interfere to remove the unwanted
interaction of a particular composition.

This section illustrates these problems with a concrete ex-
ample of an online editing application. Based on this exam-
ple we then discuss in more detail what elements of an aspect
may require to be modified to eliminate unwanted interfer-
ence with another aspect.

Note that in Sec. 4.3 we revisit the example given in this
section and show how to manage the interactions in a non-
intrusive way using our OARTA language.

2.1 Motivating Example

A company has developed an online document editing ap-
plication. Users are allowed to read or edit documents after
they have successfully logged in. Their actions are moni-
tored for which a logging aspect has been implemented (see
Fig. 1). The first advice (lines 5-9) logs login attempts for
security reasons while the other advice (lines 11-15) keeps
track of any action performed on a document.

We will now make various extensions of this program to
highlight various practical aspect interaction problems.

2.1.1 Adding a Turbo feature

Runtime analysis determined that execution performance
decreases heavily when many users are connected. After
analysis the company came up with the following strategy
to speed up the execution when necessary:

e when the number of connected users exceeds a par-
ticular threshold the secondary program features are
deactivated and a buffering cache is activated to delay
saves of the most used documents.

e as soon as the number of connected users dips below
the threshold the secondary features are (re)activated
and the buffering cache is deactivated.

Istands for One Aspect to Rule Them All.

1| public aspect Logging {

2

3 LogFile logF =...;

4 /* primary feature x/

5 before(String login, String pswd):

6 call(x User.login(String ,String))
7 && args(login ,pswd) {

8 logF .logLoginAttempt (login ,pswd);

of 3

10 /x secondary feature x/

11 before (Document doc): call(* Document.x (..))
12 && this (doc) {

13 logF .logDocAction (doc,

14 thisJoinPoint . getSignature ());

15 }

16

17| }

Figure 1: A logging aspect

1| public aspect CountActions {

2 private int Document.count=0;

3

4 public int Document.getCount() { ... }

5 public void Document.setCount(int i) { ... }
6

7 before (Document doc): call (¥ Document.x (..))
8 && ! call (* Document.x Count (..))

9 && target (doc) {

10 doc.setCount (doc.getCount ()+1);

11 }

12| }

Figure 2: A counting aspect

The part of the logging aspect that logs the login attempts
is considered to be a primary feature for security reasons and
should therefore always be active. The part that keeps track
of what actions are performed on documents is considered
to be a secondary feature and should be deactivated when
needed.

To be able to select what documents are used the most,
which is needed to implement the performance strategy, an
aspect is implemented to count actions performed on doc-
uments (see Fig. 2). This aspect adds a counter variable
to each document (line 2) and increments it for each action
performed (lines 7-11).

The buffering cache responsible to delay document saves
is implemented as an aspect as well (see Fig. 3). This aspect
is instantiated and bound to each document on which a save
action is performed (lines 1 and 4). Every instance of this
aspect has its own counter of already delayed saves (line 2).
Only when it reaches a certain number will the saves be done
(by using proceed) (lines 6-11).

On top of these two aspects, an aspect called Turbo (see
Fig. 4) is responsible to manage the (de)activation of the
buffering cache and the secondary features with regards to
the number of connected users. This functionality is achieved
by toggling a flag when the amount of users exceeds a cer-
tain threshold (lines 5-15) and by referencing this flag when
needed in the other aspects. The rest of the aspect manages
the list of most used documents: when the action counter
of a document is modified (lines 21-23) the list of the ten
most used documents is updated (lines 24-27).

Impact on aspects.

While the solution given above works and manages the
interactions between aspects there are many problems with

e R G R N R

o e
V- O ©

public aspect DelaySave pertarget(save()) {
int delayedsaves=0;
pointcut save (): call(* Document.saveOnDisk ());
Object around (): save() {
if(++delayedsaves >10) {
proceed ();
delayedsaves=0;
}

}
}

Figure 3: A buffer caching aspect

public aspect Turbo {
int threshold=100;
public static boolean activated=false;

after (): call(x User.login (..)) {
if (User.nbOnlineUsers()>threshold) {
activated=true;
}
}

after (): call(x User.logout (..)) {
if (User.nbOnlineUsers()<threshold) {
activated=false;

}
}
static List cached=mew LinkedList ();

public static boolean isCached(Document d)
{ return cached.contains(d); }

after (Document d):
call (¥ Document.setCount (..))
&& target (d) {
Turbo . cached .add(d);
sort (Turbo.cached);
if (Turbo.cached.size()>10)
Turbo.cached.removeLast ();

Figure 4: Turbo aspect

before (Document doc):
&& target (doc)

call (* Document.x(..))

doc=doc . getRootVersion ();
logF .logDocAction (doc,
thisJoinPoint . getSignature ());

0 N U AW N e

Figure 5: Modified logging advice

void around ():

save () &&

1

2

3

4 int dsaves=t+delayedsaves;

5 Document d=

6 (Document) thisJoinPoint.getTarget ();
7

8

Iterator it=d.getAllVersions ().iterator ();
while (it . hasNext ()) {

9 Document v=(Document) it .next ();

10 if (DelaySave.hasAspect(v))

11 dsaves+=

12 DelaySave.aspectOf(v).delayedsaves;

13

14 if (dsaves >10) proceed ();

15 return;

16| }

Figure 6: Modified buffer caching advice

the way that interactions between the aspects are handled.

First of all the (de)activation of the secondary logging ad-
vice is realized by modifying its pointcut in order to disable
its execution when the turbo is not activated (line 4 in Fig.
5). This is the only way to realize the strategy. Not even
runtime (un)weaving capability (in AO languages that sup-
port it [26, 33]) can express this composition cleanly because
it is not the complete aspect that needs to be (un)woven, but
only a subpart (one advice). Splitting the aspect such that
the advices can be (un)woven individually would introduce
other difficulties since that advice needs the state of the as-
pect to log information and that state is also used by the
other advice.

Secondly the same modification has to be performed on
the buffering cache aspect to enable it when needed (line 3
in Fig. 6).

Thirdly the logging pointcut has to be modified again in
order to not match calls to setCount() or getCount() intro-
duced by the action counter aspect because such calls do
not represent actual user actions on documents (line 3 in
Fig. 5).

Finally, the presence of the aspect Turbo has another im-
pact on the buffering cache aspect. Indeed, Turbo implies
that only saves on most used documents are delayed. The
pointcut of the advice delaying saves is therefore adapted to
fit this requirement (line 2 in Fig. 6).

2.1.2 Adding a versioning feature

The company decides to allow users to concurrently edit
the same document. Inspired by the aspect-oriented trans-
action framework AspectOPTIMA [21] an aspect is imple-
mented to make users work on different copies of a docu-
ment (see Fig. 7). When a user loads a document (line
10) a copy of the original document (called root version) is
created (lines 11-12) and actually loaded by calling proceed
(line 13). To keep the example simple, the source code to

1| public aspect Versioning {

2

3 Document Document.rootVersion;

4

5 public Document. getRootVersion () {...}
6

7

8

9 boolean around(Document doc):

10 call (boolean User.load (..)) && args(doc) {
11 Document newDoc=newVersion (doc);

12 newDoc.rootVersion=doc;

13 return proceed (newDoc);

14 }

15

16| }

Figure 7: A versioning aspect

commit several versions of a single document is intentionally
ignored.

Impact on aspects.

The versioning feature has a big impact on the meaning
of a Document instance. Indeed, a document is no more
represented at runtime as one instance of the class Document
but as several. As a consequence, other aspects have to be
invasively modified to handle this semantic alteration. For
instance, Logging now has to work on the root version of
the document (line 5 in Fig. 5) because it makes no sense
to have different log entries for several Document instances
when they actually represent a single entity. The aspect
CountActions has to be modified in a similar way as well.

Versioning also interacts with the aspect DelaySave. In-
deed, this aspect is instantiated and bound to every Docu-
ment instance on which a save action is performed. Because
Versioning implies that several instances of Document rep-
resent a single document, we can have several instances of
DelaySave when only one would actually be necessary. As
a consequence, the counter of already delayed saves of each
aspect instance no longer represents the number of saves per-
formed on a document. To decide whether the save action
has to be delayed or not the aspect DelaySave is modified
to compute the sum of each counter of each aspect instance
bound to a different version of a single document (lines 5-13
in Fig. 6).

2.2 Issues

Section 2.1 gives a concrete example of how aspects some-
times need to be modified to avoid semantic interferences
with other aspects when used together. This section delves
a bit deeper and discusses what modifications can be nec-
essary to remove unwanted interactions between aspects. It
looks at modifications of pointcuts, advices, and instantia-
tion policies.

2.2.1 Pointcut Modification

The example showed that it is sometimes necessary to
change pointcuts in order to compose aspects successfully.
In general we identified three scenarios which may require
this kind of invasive change.

1. Accidental Join Point Matching/Miss. When an
aspect is added to the set of aspects of an applica-
tion, it may happen that this aspect adds, removes or
modifies join points [22]. As a consequence, pointcuts
of other aspects may not match the same set of join

1| Object around(): pointcut() {

2 if (condition)

3 /* original advice code x/
4

5 else

6 return proceed ();

!

Figure 8: if(..) pointcut simulation.

points as they were matching before the aspect was
added. To manage such interactions and avoid possi-
ble semantic interferences, some pointcuts may have
to be adapted to handle the change (see for example
line 3 in Fig. 5).

2. Mutual Exclusiveness. Pointcuts may have to be
changed even when no join points are added, removed
or affected. Indeed, several aspects may for instance
implement a similar feature but with different strate-
gies (e.g. different transaction strategies applied on
different objects [21]). As a result, it is often required
by the application constraints that these aspects should
not coexist at the same join points. Pointcuts then
have to be modified to ensure they do not intersect.

3. Runtime Advice (De)Activation. The aspect com-
position may sometimes require an advice or an aspect
to be (de)activated under runtime conditions. This
can occur for instance to ensure mutual exclusiveness
in control-flow segments (e.g. features competing for
resources like our logging advice which must be de-
activated to speed up the execution) or to provide a
composition feature (e.g. our DelaySave which is only
activated for most used documents). In AO languages
that support the if(..) pointcut predicate, runtime ad-
vice (de)activation can be realized by adding a runtime
condition to the pointcut of the advice (see line 4 in
Fig. 5).

2.2.2 Advice Modification

Modifying advice is a second way to manage aspect inter-
actions, and we list a number of possibilities.

1. Runtime Advice (De)Activation. In AO languages
which do not support the if(..) pointcut predicate, run-
time (de)activation of advice is realized by modifying
the advice code in order to simulate that predicate.
The code given in Fig. 8 illustrates the simulation for
an advice of kind around.

2. Advice Execution Context. Advice and methods
can be considered as similar in the sense that they both
accept arguments. In the case of advice, arguments
are contextual values from the join points on which
advice are being applied. Certain aspect compositions
may require modifications of the advice to adapt their
execution context.

We illustrate this by revisiting the Versioning aspect
from Sec. 2.1. This aspect alters the semantics of
the environment: several instances of the class Doc-
ument may represent a single actual document. This
change in the environment interacts with the Logging
and the CountActions aspects since they manipulate

documents. In such situations, the interaction cannot
be handled by ensuring mutual exclusiveness or run-
time (de)activation because these aspects are somehow
complementary and need to coexist. To manage the
interactions the source code of the involved advice is
modified to make them work on the correct contextual
input (line 5 in Fig. 5).

2.2.3 Instantiation Policy Modification

An aspect instance represents the state of an aspect. It
defines the values of the aspect variables which are used
in the aspect’s advice. Aspect instances can have different
scopes, determined by instantiation policies. Scopes are ei-
ther global (a singleton instance for the whole system) or
local (one instance per object, thread, control-flow segment,
etc.). Different languages have different instantiation poli-
cies. ASPECTJ, for example, does not support the per thread
policy.

When an aspect alters the environment it may have an
impact on the instantiation policy of other composed as-
pects. For instance, our versioning aspect has an impact
on the instantiation policy of the aspect DelaySave. Indeed,
since a document may be represented as several instances of
the class Document, the scope of an instance of DelaySave
should not be per Document object anymore but per set of
Document objects which represent a single document.

As a second example suppose that an aspect is imple-
mented to monitor a certain sequence of events and check
if the sequence is correct with respect to some rules [3].
The state of that aspect contains the history of already met
events. This monitoring aspect is then composed with an as-
pect intercepting certain loop join points to parallelize their
iterations in different threads [15]. In order to ensure the
correct behavior of the application, the monitoring aspect
has now to be instantiated per thread. Otherwise, it could
identify erroneous patterns of events because of the paral-
lelization.

Note that this interaction management is invasive because
the instantiation policy of an aspect is specified in that as-
pect.

2.3 Conclusion

When an aspect is developed independently it makes as-
sumptions about its environment. These assumptions can
be made on various things such as the available resources,
where, when and how it will be applied on the base system
or even the environment semantics. Moreover aspects can
impact their environment when used. Composing aspects
therefore means that assumptions made by one aspect may
be broken by another one. Such interactions can lead to
semantic interferences if they are not correctly treated.

In our examples, source code of aspects need to be inva-
sively modified in order to manage the interactions implied
by the aspect composition. As a consequence, the extra
code needed to handle the aspect composition is tangled
and scattered over several aspects, making the code hard to
understand and less reusable.

3. ASPECTS TO COMPOSE ASPECTS
Aspect-oriented programming is a programming paradigm
to modularize concerns which are tangled and scattered across
an application. Since composing aspects may imply the
specification of additional behavior which crosscuts aspects,
it seems quite reasonable and relevant to expect aspect-
oriented languages to have mechanisms to modularize it.
However, current aspect-oriented languages do not sup-
port the specification of aspects over aspects very well. This
section discusses this absence of support for aspect-orientation
and then proposes some requirements an AO language should
meet to support the composition of aspects with aspects.

3.1 Base Language-Related Join Point Model

To separate crosscutting concerns from the base system,
an aspect-oriented language relies on a join point model
(JPM). A JPM specifies three elements: (1) the points in
the program exposed to the aspects (the join points), (2) a
means of identifying join points and (3) a means of specify-
ing semantics at join points [24]. The last two elements are
generally referred to as pointcut and advice respectively.

For most aspect-oriented languages, the base system (or
root concern) is a program specified in an object-oriented
language [6]. JPMs of these languages are therefore mostly
focussed on object-orientation. For example, the typical dy-
namic join points for object-oriented languages are events
such as method or constructor call, class or object initializa-
tion, or exception handling.

Separating the base program from the aspects by using
base-related join points has proven to be a good way to
modularize concerns that crosscut the base code. But the
aspect composition is a concern that does not crosscut the
base system but the aspects themselves. Therefore, base-
related join points cannot be used to specify such aspects
over aspects since aspects use concepts and elements that
do not appear in the base application (e.g. pointcuts or ad-
vice). For instance, it is not possible for an aspect to modify
pointcuts of another aspect using base-related pointcuts, ad-
vice or inter-type declarations.

Note that some AO languages have features for reasoning
about aspects. But these features are quite limited since
their purpose is rather to gain expressivity while specifying
base-related aspects than to specify aspects over aspects.
AspecTJ, for example, has a pointcut to intercept the ex-
ecution of advice (the adviceexecution() predicate) that is
often used to avoid advising loops. We will explain more
precisely why this predicate is limited to compose aspects in
Section 4.

3.2 Aspect-Related JPM Requirements

In this section we enumerate the minimal features we feel
a join point model should support to empower an aspect to
express aspect composition. We discuss the ability to modify
foreign aspects, to specify advice precedence relationships
and to express aspect dependency relationships.

3.2.1 Foreign Aspect Modification

We saw previously in this paper that composing aspects
may require invasive modification of the composed aspects.

In particular, Sec. 2.2.1 and 2.2.2 highlighted that some
composition cases require pointcuts and advice to be adapted.
To encapsulate such modifications in an aspect, the join
point model of the language should offer a means to modify

AccessClassified .-

Copyable
- |
~ - VT
1
1
.

| Tracked |

- L
| Versioned | | Serializable |

\
| Shared | |
i 4 S~ A
] I A]
1 1 SS 1
1 L = 1
| AutoRecoverable I» 77777 >| Recoverable | | Persistent |

Figure 9: Complex aspect dependencies in Aspec-
tOptima [21]

pointcuts and advice of foreign aspects. Moreover, because
an aspect composition may need to adapt a specific subpart
of an aspect, the join point model should provide a means to
precisely identify pointcuts and advice. For instance, when
composing the counting and the logging aspects there was a
need to adapt only one pointcut of the logging aspect shown
in Fig. 1 (more precisely, the pointcut at lines 11-12).

The join point model should also allow for access and
adaptation of the contextual input of an advice. Indeed, we
saw previously that invasive interaction management may
depend on the advice’s input (line 2 in Fig. 6) and may
even require its modification (line 5 in Fig. 5).

The instantiation policy of an aspect also needs to be
changeable to solve particular aspect interactions, like we
showed in Sec. 2.2.3. We stress that a finite set of instanti-
ation policies would not handle all usage scenarios and that
user-defined policies are needed. For example, the interac-
tion between the DelaySave and Versioning aspects of Section
2 can then be solved elegantly by changing the instantiation
policy for DelaySave from per instance of class Document
to per set of instances of class Document that represent a
single document. Note that for example ASPECTC++ [30]
supports user-defined instantiation policies.

3.2.2 Precedence Management

It may happen that the order in which the weaver ap-
plies aspects to the base program determines the behavior
of the resulting application. This phenomenon occurs with
interacting aspects and is even used in [1, 16] to detect in-
teractions.

Consider for example two different aspects, caching and
authorization. Weaving the caching aspect before the au-
thorization aspect gives rise to semantic interferences. In-
deed, when the result of a method has already been cached,
that cached value is directly returned before authorization is
performed, potentially resulting in security breaches. This
is not the case when the authorization aspect is woven first.

To manage such interactions, the programmer has to spec-
ify which ordering produces the desired application seman-
tics. [23, 7] give examples showing that a weaving ordering
at the aspect level cannot resolve all precedence-related in-
teractions correctly. Instead the order has to be specified at
the more fine-grained advice level.

Composing aspects with aspects therefore requires the as-
pects to have the ability to specify advice precedence rela-
tionships.

3.2.3 Dependency Management

An aspect may assume that another aspect is woven in
order to behave correctly. This aspect interaction is known

as dependency [29]. If an aspect on which another aspect
is dependent is not woven in the base system, the resulting
application does not behave correctly.

The most used example to illustrate aspect dependency in
the literature is probably the couple Authentication - Autho-
rization. Authentication implements the identification of a
user while Authorization manage access rights with respect
to the identified user. These aspects depend on each other
to ensure access policy.

Dependency relations can however be much more com-
plex. Figure 9 shows the inter-aspect dependency graph
from AspectOPTIMA [21]. It shows that aspects may de-
pend on several aspects and that an aspect may be required
by several different aspects.

As a consequence, the management of dependency interac-
tions becomes tricky when runtime weaving/unweaving are
possible (like for example in PROSE [26] or JAsCo [33]). In-
deed, on the one hand the weaving of an aspect implies to
weave all its dependencies if they are not woven yet and on
the other hand, the unweaving of an aspect implies to un-
weave all its dependencies if they are not required by another
aspect which is still woven.

We are not aware of any aspect-oriented language that
supports to explicitly declare aspect dependency relations.
Instead, when needed, the relationships exist implicitly in
the aspects that are involved.

4. OARTA

This section describes OARTA, an AOP language we made
that implements all features we introduced in Sec. 3. We de-
cided to make OARTA an extension of ASPECTJ because we
could take advantage of the extensible AspectBench Com-
piler (ABC) [4]. We believe however that our model can
be applied to other aspect-oriented languages without much
conceptual problems, although a complete realization like
we show here for ASPECTJ might be technically challenging.

The rest of this section is structured as follows: Section
4.1 discusses features for managing aspect interactions that
exist in ASPECTJ. Section 4.2 explains the OARTA exten-
sions, followed by Section 4.3 that shows how composition
can be implemented as an aspect in OARTA. Then, Section
4.4 gives some implementation details.

4.1 Aspect)’s JPM

In this section we discuss the basic ASPECTJ features that
can be used to implement aspect compositions in dedicated
aspects.

4.1.1 The adviceexecution Pointcut Predicate

It is possible in ASPECTJ to intercept executions of advice
using the predicate adviceexecution(). However, this predi-
cate does not allow to identify executions of one particular
advice because it identifies any advice execution.

When used in conjunction with the predicate within(..)
we can restrain the selection to a certain aspect but we can-
not distinguish two advice of that aspect. When used in
conjunction with the predicate args(..) the selection can be
restrained to advice with signatures with particular specified
argument types. However, using these additional predicates
does not guarantee that we can identify one particular ad-
vice if several advice of an aspect have the same signature.

Note that an advice has arguments if its pointcut uses
a predicate (target(..), args(..) or this(..)) to bind values

1| public aspect Example {

2 Object around(Object obj):

3 adviceexecution () && args(obj)

4 && !within (Example) {

5 print (obj+”_is_used_in_an_advice”);
6 return proceed(new Object ());

7|}

8|}

Figure 10: Retrieving and modifying the contextual
input of an advice execution.

public interface Container { }

public aspect Loader {
public Object Container.aField;
public void Container.aMethod() { ... }
before (): call(x Container+.x(..)) { ... }

W N =

public aspect Connector {
declare parents: aClass implements Container;

= O © 0w N o«

=

Figure 11: Indirection strategies.

from the join point to variables. Interestingly, we can there-
fore use adviceexecution in conjunction with args to retrieve
contextual values from the intercepted advice execution (see
Fig. 10).

Using advice of kind around, contextual values can also be
modified by giving other values as arguments when calling
proceed (line 4 in Fig. 10).

4.1.2 The if Pointcut Predicate

ASPECTJ supports the if(..) pointcut predicate. In the
absence of true runtime weaving, this predicate can be used
to activate or deactivate advice and aspects at runtime.

4.1.3 Indirection Strategies

Indirection strategies (or patterns) are described in [14].
These strategies are intended to separate the specification of
an aspect’s effects from the specification of the places where
the effects should be applied.

Several participants are involved in order to realize the
strategies: an empty interface (the container), an aspect
which specifies the desired effects by referencing the con-
tainer (the loader) and an aspect which connects actual
classes to the container (the connector). This is illustrated
in Fig. 11. As a result, the loader aspect does not have to
be invasively configured with application-specific informa-
tion and is more reusable.

When expressing aspect composition as an aspect these
strategies are really helpful. They allow the modification of
foreign pointcuts thanks to the indirection. However, these
strategies can only modify the parts of a pointcut related to
types. They cannot handle behavior-specific modifications.
For instance, they do not allow to add an if(..) pointcut
predicate.

4.2 OQarta’s Extensions

We now enumerate the extensions OARTA makes to As-
PECTJ in order to support our conceptual join point model.

4.2.1 Named Advice

Advice now have to be named. The following examples
illustrate the syntax changes:

e void around myName(int i): call(* **(..)) { ... }
e before anotherName(): set(* *.*) { ... }

This language extension allows us to precisely identify both
advice and pointcuts, because an advice has exactly one
pointcut in ASPECTJ.

4.2.2 Advice Patterns

In order to quantify over advice, our extension makes it
possible to use advice patterns. An advice pattern is similar
to a method pattern except that it requires additional infor-
mation about the kind of the advice (and has no modifier
patterns nor exception throwing). The advice kind infor-
mation allowed in an advice pattern is either before, after,
around, afterthrowing, afterreturning or the wildcard * (which
identifies any of them).

Examples:

e String around *.foo(int)
identifies all around advice named foo taking one ar-
gument of type int and returning a String.

e * * Aspect.*(..)
identifies all advice of the aspect Aspect.

Note that only around advice have a return type. All other
advice kinds return void.

4.2.3 Foreign Pointcut Modification

In AsPECTJ, pointcuts can use conjunctions, disjunctions
and negations of pointcut predicates. As a result, point-
cuts can be extended by adding another pointcut using a
disjunction, or specialized using a conjunction.

The modification of foreign pointcuts is realized by using
the orpointcut and andpointcut constructs:

e orpointcut: an_advice_pattern : a_pointcut;
e andpointcut: an_advice_pattern: a_pointcut;

orpointcut affects the pointcuts of advice matched by the
given advice pattern by replacing their pointcut with the
disjunction of the original pointcut and the pointcut given
as argument. andpointcut has the same effect but using con-
junction.

When used together with the indirection strategies de-
scribed in Sec. 4.1.3 this language extension allows us to
support the modification of foreign pointcuts.

Note that this language feature is similar to the global
pointcut extension proposed in [4], that differs from our pro-
posal because it only supports conjunctions and affects all
pointcuts of an aspect.

4.2.4 Modified declare precedence construct

The original declare precedence construct specifies weaving
orderings at the aspect level. Our extension allows it to
be used at the more fine-grained advice level using advice
patterns. The modified construct is given here:

e declare precedence: advpatternl, advpattern2;

4.2.5 Modified adviceexecution predicate

We saw in Sec. 4.1.1 that the pointcut predicate advice-
execution() cannot always identify executions of a specific
advice. We therefore extend it to take an advice pattern as
argument: adviceexecution(an_advice_pattern) so that it can
match executions of advice matched by the advice pattern.

Moreover, in order to be able to expose the entire join
point context to aspects (and not only the arguments of the
advice (see Sec. 4.1.1)), the join point matched by the advice
can be retrieved by using the pointcut predicate target(..).
Here is an example to illustrate this:

before catchAdvEx(JoinPoint jp):
adviceexecution (* around *.x(..))
&k target(jp) {
print (jp+”:_matched_by_an_around_adv.”);

AW N e

o

This advice intercepts every execution of an around advice
and prints the join point that has been matched by that
advice. The target(..) predicate is used to bind the join point
runtime representation to the variable jp. Conceptually, we
believe it makes sense to consider a join point as the target
of an advice’s execution.

4.2.6 User-Defined Instantiation Policies

In ASPECTJ, an aspect instance is implicitly retrieved at
runtime by calling the static method aspectOf(). An aspect’s
advice is then ’called’ on the retrieved instance in order to
perform the advice’s behavior. This method is automati-
cally generated for each aspect during the compilation. An-
other static method is generated as well: hasAspect(). That
method is used at runtime to check if an aspect instance
exists.

These methods take no arguments for aspects with an
instantiation policy that is either singleton or per control-
flow segment. They take one object argument if the policy
is per object.

AsPECTJ compilers do not allow these methods to be re-
defined (contrary to for example AsPECTC++). Moreover,
they cannot be intercepted by pointcuts. OARTA changes
this to support user-defined instantiation policies: a com-
position aspect can specify instantiation policies for other
aspects by intercepting these methods and 'overriding’ them
using advice of kind around. We illustrate this in the next
section.

4.3 Examples

In this section we give three examples to show how our
extended join point model makes it possible to separate the
interaction management from the aspects. We first revisit
the motivating example of this paper, then we give an ex-
ample involving dependency management to conclude with
an advice-level ordering example.

4.3.1 Revisiting the motivating example

The example from Sec. 2 illustrated several practical as-
pect interaction problems that can occur. This section shows
how to handle them in OARTA featuring our JPM. We as-
sume for simplicity that the source code given earlier re-
spects our extended language’s syntax (in other words, we
assume that advice are named).

Turbo. The Turbo aspect impacts the pointcuts of the
Logging and DelaySave aspects (see Sec. 2). Instead of mod-
ifying these pointcuts by destructively changing these two

1| public aspect Turbo {
2
3 /* code from Fig. 4 x/
4
5
6 andpointcut: (% * Logging.*(Document)):
7 if (! Turbo.activated);
8 andpointcut: (x * DelaySave.x()):
9 if (Turbo.isCached (thisJoinPoint.getTarget ()))
10 && if (Turbo.activated);
11
12| }
Figure 12: Extended Turbo aspect.
1| public aspect CAlnteractions {
2 andpointcut: (x * Logging.*(Document)):
3 lcall (x Document.* Count (..));
iy

Figure 13: Aspect that manages the CountActions
interactions.

aspects, we use the andpointcut construct to alter them from
the outside (see Fig. 12). The first declaration modifies the
pointcut of the logging advice considered as a secondary fea-
ture (lines 6-7) while the second one modifies the pointcut
in DelaySave (lines 8-10).

CountActions. The aspect CountActions introduces new
call join points which must be avoided in Logging. Again, we
can use andpointcut to manage the interaction in a dedicated
CAlnteractions aspect (see Fig. 13).

Versioning. The Versioning aspect had very complex in-
teractions which required us to invasively modify advice to
support it in Sec. 2. We are now able to modularize all
of these interactions in a dedicated VInteractions aspect (see
Fig. 14). The first advice of that aspect handles the join
point context modification required in Logging and Coun-
tActions (lines 2-7). To do so, the advice has to intercept
executions of these aspects’ interacting advice (lines 3-4).
It also binds the Document instance of the advice retrieved
from the join point context to the variable doc (line 5). Fi-
nally, it calls proceed with the root version of the document
as argument in order to make the intercepted advice work
on the correct instance (line 6).

The rest of the Vinteractions aspect manages the interac-
tion with DelaySave. The origin of this interaction is the
instantiation policy of the aspect DelaySave (see Sec. 2).
To manage it, Vinteractions replaces the instantiation pol-
icy with a user-defined instantiation policy. This is achieved
by intercepting executions of the static hasAspect() and as-
pectOf() methods of DelaySave and replacing their original
behavior (lines 11-29).

The first advice handles calls to hasAspect() quite simply:
if the argument is an instance of class Document, the ad-
vice answers that an aspect instance exists. Otherwise, it
answers the opposite.

The other advice manages the calls to aspectOf(). If the
argument is an instance of class Document, it retrieves the
root version of that instance (line 23). It then checks if an
instance of the aspect has already been created for that root
version (lines 24-25). If no instance has been associated,
an instance is generated and stored in the object (in a field
created by the aspect (line 9)) before being returned. Note

1| public aspect VInteractions {

2 void around logNcount (Document doc):

3 (adviceexecution(* * Logging.*(Document)) ||
4 adviceexecution(x x CountActions.*(Document)))
5 && args(doc) {

6 proceed (doc.getRootVersion ());

I

8

9 public DelaySave Document.d_aspect;

10

11 boolean around hasAspect(Object o0):

12 execution (static * DelaySave.hasAspect (..))
13 && args (o) {

14 if (o instanceof Document) return true;

15 else return false;

16 }

17

18 DelaySave around aspectOf(Object o):

19 execution(static * DelaySave.aspectOf(..))
20 && args(o) {

21 if (o instanceof Document) {

22 Document doc=(Document) o;

23 doc=doc.getRootVersion ();

24 if (doc.d_aspect==null)

25 { doc.d_aspect=new DelaySave(); }

26 return doc.d_aspect;

27

28 else throw new RuntimeException ();

29 }

30| }

Figure 14: Aspect that manages the Versioning inter-
actions.

that AspecTJ forbids explicit instantiation of aspects but
OARTA allows it.

All interactions of our motivating example have now been
managed and no interacting aspect had to be modified. Ev-
erything has been realized in dedicated aspects.

4.3.2 Dependency Management

In the previous example, we created an aspect Vlnterac-
tions responsible for the management of interactions pro-
voked by the aspect Versioning. As a consequence, Version-
ing depends on Vinteractions. In this example, we show how
dependencies can be managed in dedicated aspects.

Dependencies have to be managed when runtime weaving
is possible (for compile-time weaving it suffices to ensure
their presence at the compilation). Figure 15 shows how to
add an aspect that enables runtime weaving in OARTA. It
implements static methods to weave and unweave aspects
(lines 4-8). Unfortunately, we could not use the indirec-
tion strategies presented in Sec. 4.1.3 because they do not
support introduction of static members. An alternative so-
lution is to have a static set which contains aspects that are
currently woven (line 2).

We use indirection to add a runtime condition in all point-
cuts of aspects implementing RWeavable (line 13-14). As
a result, advice of these aspects are only executed if their
respective aspect is woven. Figure 16 shows the aspect
that connects Versioning and Vlnteractions to the interface
RWeavable.

Now that our aspects are weavable at runtime, we can
manage their dependencies. A dependency has to be man-
aged at two moments: at weaving-time and at unweaving-
time. The aspect responsible for managing dependencies is
given in Fig. 17. The first advice of the aspect handles
weaving-time situations: when Versioning is woven (lines 4—
6), the aspect weaves Vlnteractions (line 7). The handling at

1| public aspect RuntimeWeaving {

2 static Set woven=new HashSet ();

3

4 public static void weave(Class aspect)

5 { woven.add(aspect); }

6

7 public static void unweave(Class aspect)

8 { woven.remove (aspect); }

9

10 public static boolean isWoven(Class aspect)
11 { return woven.contains (aspect); }

12

13 andpointcut: (x * RWeavable+.x(..)):

14 if (RuntimeWeaving.isWoven (this.getClass ()));
15] }

Figure 15: Aspect enabling aspects to be woven at
runtime.

1| public aspect Connector {

2 declare parents: Versioning

3 implements RWeavable;

4 declare parents: VInteractions
5 implements RWeavable;

o }

Figure 16: Aspect making two aspects weavable at
runtime.

unweaving-time is simply the opposite.

4.3.3 Advice-Level Ordering

Assume an application that handles lots of files, that some-
times need to be encrypted or compressed to ensure privacy
or to save space. Depending on the use case one encryption/-
compression technique may be preferred over another (e.g., a
symmetric encryption to save files on disk and asymmetric to
transfer files over a network). Each encryption/compression
technique is implemented as an aspect. Figure 18 illustrates
the zip compression and symmetric encryption techniques.
We assume for convenience that other encryption/compres-
sion aspects adopt the same advice nomenclature.

The problem is that, when these advice are applied on
the same join points, we might try to decrypt a compressed
file (or decompress an encrypted one), which will provoke
an error. Therefore, precedence relationships have to be
specified:

e declare precedence: * * *.encrypt(..), * * *.compress(..);

e declare precedence: * * * decompress(..), * * *.decrypt(..);

1| public aspect VersioningDependencyManagement {
2

3 before weave(Class c¢):

4 call(static void RuntimeWeaving.weave (..))
5 && args(c)

6 && if (c==Versioning.class) {

7 RuntimeWeaving . weave(VInteractions . class);
s}

9

10 after unweave(Class c):

11

12

13| }

Figure 17: Aspect managing the dependency of the
Versioning aspect.

1| public aspect ZipCompression {

2 before compress(File f):

3 call (¥ FileSystem .save(File)) && args(f) {
4 zip (f);

5

6 after decompress(File f):

7 call (x* FileSystem .open(File)) && args(f) {
8 unzip (f);

9

10 }

11

12| public aspect SymEncryption {

13 String key= ... ;

14

15 before encrypt(File f):

16 call (¥ FileSystem .save(File)) && args(f) {
17 symenc (f,key);

18

19 after decrypt(File f):

20 call (x FileSystem.open(File)) && args(f) {
21 symdec (f,key);

22

23| }

Figure 18: ZipCompression and SymEncryption

Note that it would have been impossible to solve this com-
position issue non-invasively with an ordering at the aspect
level. Indeed, it would have required us to modify the as-
pects in order to get only one advice per aspect and therefore
being able to order them correctly.

4.4 Implementation

ABC is an implementation of ASPECTJ with the intention
of easing language extensions or optimisations. We chose it
as platform for our experiments for exactly that reason.

ABC provides a frontend built on the PoLyGLOT frame-
work [27]. Among other things, this framework allows to
specify a grammar as an incremental set of modifications
to the existing JAvVA grammar. Hence, we used it to add
new elements to the ASPECTJ’s syntax specified in ABC (i.e.,
advice patterns and the andpointcut/orpointcut constructs),
and to modify existing elements (i.e., advice which now have
a name, and declare precedence and adviceexecution which
now takes advice patterns as arguments).

POLYGLOT is also structured as a list of passes that rewrite
the abstract syntax tree. Inspired by the implementation of
the global pointcuts (see Sec. 4.2.3), we have implemented
the modification of foreign pointcuts as a pass that rewrites
pointcut nodes of advice matched by the patterns speci-
fied in andpointcut and orpointcut constructs. Another pass
has been implemented to collect precedence declarations and
compute the concrete advice ordering used at weaving-time.

User-defined instantiation policies for foreign aspects is
based on two principles: (1) allowing pointcuts to match ex-
ecutions of the aspectOf and hasAspect methods, and (2) al-
lowing users to explicitly instantiate aspects using new. This
more permissive behavior of the compiler has been achieved
by simply toggling a flag in ABC for the former and by re-
moving a test in the type checker for the latter.

5. DISCUSSION

The goal of this paper is to highlight the fact that aspect
composition is itself a concern that crosscuts aspects and
that using aspects to implement it is as relevant and useful
as using aspects for concerns that crosscut the base system.

The features we describe can be used to solve many aspect
composition problems, as indicated through the various ex-
amples. However we are aware that our solution is not yet
complete and that some composition issues remain that we
do not handle. For instance, we did not propose a context-
dependent ordering feature, which may be required in certain
cases [7], nor join point model elements that would handle
the new andpointcut/orpointcut constructs from the outside
(if composition aspects need to be composed as well). We
are currently in the process of designing a complete model
of aspectual composition.

6. RELATED WORK

Aspect interactions and aspect interference occur frequently
in practice. Therefore there is already quite some research
that investigates these problems.

Detection of interactions or interferences caused by as-
pects is tackled in many works [25, 22, 19, 18, 1, 16, 17, 13,
9, 8, 10, 11, 32, 31, 28, 5, 20]. However, in this paper we do
not address the detection of interactions but instead focus
on the step that follows detection: how to resolve conflicts in
a non-intrusive manner. Note that the research of Douence
et al. [9, 8], not only detects interactions but also introduces
some explicit aspect composition operators. However these
operators are too coarse-grained to handle the various com-
plex scenarios highlighted in the paper (they basically con-
sist of precedence and mutual exclusiveness relationships).

Related papers have proposed some new language mecha-
nisms to deal with a specific composition concern [21, 4, 2],
but none have clearly expressed the need for modularization
of a large variety of composition concerns.

In [21], an aspect-oriented transaction framework is imple-
mented consisting of ten reusable aspects. The authors re-
port some limitations they encountered in separating the as-
pects and with inter-aspect configurability using ASPECTJ.
To solve some of these limitations they propose amongst
others to have (1) explicit constructs to declare dependen-
cies and (2) methods to enable/disable pointcuts at runtime.
These propositions clearly share ideas with our approach.

Ernst et al. [12] also proposes named advice for ASPECTJ
in order to support advice polymorphism and to allow ad-
vice to be ’overridden’. We used named advice to precisely
identify advice and pointcuts in order to adapt them from
the outside.

Dinkelaker et al. [7] address the situation where develop-
ers are prevented from tailoring aspect-oriented semantics
in an application-specific manner. The solution proposed is
a meta-aspect protocol where parts of the semantics can be
redefined. Their approach makes it possible to define in-
teraction management as semantic redefinitions. As a con-
sequence, aspects may not need to be changed to compose
them. Note that when many interactions have to be man-
aged this all needs to be done in a single redefined element
of the protocol. In our approach we can manage single inter-
actions in a single aspect, which is much easier to maintain
and understand.

In JAsCo [33], an aspect bean defines the behavior of
an aspect while a connector can define pointcuts and run-
time composition strategies. While this enables JASCo to
have independency between the base system and the aspect
beans, it does not solve invasive composition-specific modifi-
cations of the aspects: depending on the composed aspects,
pointcuts might still have to be adapted as well as advice.

Moreover, similarly to the last mentioned work, all compo-
sition code or strategies required by the interacting aspects
have to be located in a single connector handling these as-
pects.

7. CONCLUSION

This paper focusses on the problem of managing interac-
tions between aspects that are being composed. It answers a
practical need that developers often face when using several
aspects together that crosscut each-other. Our work comple-
ments various existing research that detects aspect interac-
tions or aspect interferences by handing constructs to man-
age the interactions without needing to change the aspects
that are being composed. We propose an aspect join point
model that focusses on the relations between aspects. It ex-
tends existing join point models that focus on the relations
of aspects with the base program. We extended ASPECTJ to
incorporate this extended join point model. The resulting
language, OARTA, can manage interactions between aspects
and as a result can treat aspect composition itself as an
aspect.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their comments that helped to improve the presentation
of the paper.

This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science
Policy.

8. REFERENCES

[1] M. Aksit, A. Rensink, and T. Staijen. A
graph-transformation-based simulation approach for
analysing aspect interference on shared join points. In
AOSD ’09: Proceedings of the 8th ACM international
conference on Aspect-oriented software development,
pages 39-50. ACM, 2009.

[2] A. Assaf and J. Noyé. Dynamic AspectJ. In DLS ’08:
Proceedings of the 2008 symposium on Dynamic
languages, pages 1-12. ACM, 2008.

[3] P. Avgustinov, E. Bodden, E. Hajiyev, L. Hendren,
O. Lhoték, O. de Moor, N. Ongkingco, D. Sereni,
G. Sittampalam, J. Tibble, and M. Verbaere. Aspects
for trace monitoring. In Formal Approaches to Testing
Systems and Runtime Verification (FATES/RV).
Springer, 2006.

[4] P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, J. Lhoték, O. Lhotak, O. de Moor,
D. Sereni, G. Sittampalam, , and J. Tibble. abc: An
extensible AspectJ compiler. In Transactions on
Aspect-Oriented Software Development, 2005.

[5] L. Bergmans. Towards detection of semantic conflicts
between crosscutting concerns. In AAOS Workshop at
ECOOP 2003, 2003.

[6] J. Brichau, M. Mezini, J. Noyé, W. Havinga,

L. Bergmans, V. Gasiunas, C. Bockisch, T. D’Hondyt,
and J. Fabry. An initial metamodel for aspect-oriented
programming languages. Deliverable D39,
AOSD-FEurope, Feb. 2006.

[7] T. Dinkelaker, M. Mezini, and C. Bockisch. The art of
the meta-aspect protocol. In AOSD ’09: Proceedings

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

of the 8th ACM international conference on
Aspect-oriented software development, pages 51-62.
ACM, 20009.

R. Douence, P. Fradet, and M. Siidholt. A framework
for the detection and resolution of aspect interactions.
In GPCE, pages 173-188, 2002.

R. Douence, P. Fradet, and M. Siidholt. Composition,
reuse and interaction analysis of stateful aspects. In
AOSD ’04: Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 141-150. ACM, 2004.

P. E. A. Durr, L. M. J. Bergmans, and M. Aksit.
Reasoning about behavioral conflicts between aspects.
Technical Report TR-CTIT-07-15, Enschede, Feb
2007.

P. E. A. Durr, T. Staijen, L. M. J. Bergmans, and

M. Aksit. Reasoning about semantic conflicts between
aspects. In EIWAS 2005: 2nd European Interactive
Workshop on Aspects in Software, 2005.

E. Ernst and D. H. Lorenz. Aspects and
polymorphism in AspectJ. In AOSD ’03: Proceedings
of the 2nd international conference on Aspect-oriented
software development, pages 150-157. ACM, 2003.

B. D. Fraine, P. D. Quiroga, and V. Jonckers.
Management of aspect interactions using
statically-verified control-flow relations. In Proceedings
of the 3rd International Workshop on Aspects,
Dependencies and Interactions, 2008.

S. Hanenberg and P. Costanza. Connecting aspects in
AspectJ: strategies vs. patterns. In First AOSD
Workshop on Aspects, Components, and Patterns for
Infrastructure Software, 2002.

B. Harbulot and J. R. Gurd. A join point for loops in
AspectJ. In AOSD ’06: Proceedings of the 5th
international conference on Aspect-oriented software
development, pages 63—74. ACM, 2006.

W. Havinga, I. Nagy, L. Bergmans, and M. Aksit.
Detecting and resolving ambiguities caused by
inter-dependent introductions. In AOSD ’06:
Proceedings of the 5th international conference on
Aspect-oriented software development, pages 214—-225.
ACM, 2006.

W. Havinga, I. Nagy, L. Bergmans, and M. Aksit. A
graph-based approach to modeling and detecting
composition conflicts related to introductions. In
AOSD ’07: Proceedings of the 6th international
conference on Aspect-oriented software development,
pages 85-95. ACM, 2007.

E. Katz and S. Katz. Incremental analysis of
interference among aspects. In FOAL ’08: Proceedings
of the 7Tth workshop on Foundations of aspect-oriented
languages, pages 29-38. ACM, 2008.

E. Katz and S. Katz. Modular verification of strongly
invasive aspects. In Languages: From Formal to
Natural: Essays Dedicated to Nissim Francez on the
Occasion of His 65th Birthday, pages 128-147.
Springer-Verlag, 2009.

B. Kessler and E. Tanter. Analyzing interactions of
structural aspects. In Workshop on Aspects,
Dependencies and Interactions, 2006.

J. Kienzle, E. Duala-Ekoko, and S. Gélineau.
Aspectoptima: A case study on aspect dependencies

and interactions. In Transactions on Aspect-Oriented
Software Development V, pages 187-234.
Springer-Verlag, 2009.

G. Kniesel. Detection and resolution of weaving
interactions. Transactions on Aspect-Oriented
Software Development, special issue on Aspect
Dependencies and Interactions, pages 1-53, Apr 2009.
A. Marot and R. Wuyts. Composability of aspects. In
SPLAT ’08: Proceedings of the 2008 AOSD workshop
on Software engineering properties of languages and
aspect technologies. ACM, 2008.

K. Masuhara, G. Kiczales, and C. Dutchyn.
Compilation semantics of aspect-oriented programs. In
FOAL 2002 Proceedings: Foundations of
Aspect-Oriented Languages Workshop at AOSD 2002,
pages 17-26, 2002.

F. Munoz, B. Baudry, and O. Barais. Improving
maintenance in aop through an interaction
specification framework. In ICSMO08, 2/th
International conference on Software Maintentance.
IEEE Computer Society Press, 2008.

A. Nicoara and G. Alonso. Dynamic aop with prose.
In Proceedings of the International Workshop on
Adaptive and Self-Managing Enterprise Applications
(ASMEA 2005), 2005.

N. Nystrom, M. R. Clarkson, and A. C. Myers.
Polyglot: An extensible compiler framework for Java.
In Compiler Construction, 12th International
Conference, CC 2003, volume 2622 of LNCS, pages
138-152. Springer, 2003.

R. Pawlak, L. Duchien, and L. Seinturier. Compar:
Ensuring safe around advice composition. In

M. Steffen and G. Zavattaro, editors, FMOODS,
volume 3535, pages 163—-178. Springer, 2005.

F. Sanen, E. Truyen, B. D. Win, W. Joosen,

N. Loughran, G. Coulson, A. Rashid, A. Nedos,

A. Jackson, and S. Clarke. Study on interaction issues.
In AOSD-FEurope Deliverable D44,
AOSD-Europe-KUL-7, 2006.

O. Spinczyk and D. Lohmann. The design and
implementation of aspectc++. In Know.-Based Syst.,
volume 20, pages 636-651. Elsevier Science Publishers
B. V., 2007.

M. Stoerzer, J. Krinke, and U. Passau. Interference
analysis for AspectJ. In In Workshop on Foundations
of Aspect-Oriented Languages, 2003.

M. Storzer and F. Forster. Detecting
precedence-related advice interference. In ASE ’06:
Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, pages
317-322. IEEE Computer Society, 2006.

D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
an aspect-oriented approach tailored for component
based software development. In AOSD ’03:
Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 21-29.
ACM, 2003.

