
Design of Software Systems
(Ontwerp van SoftwareSystemen)

1 Introduction

Roel Wuyts

2016-2017

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

People

Roel Wuyts

– URL: http://roelwuyts.be/

Philippe De Ryck

– philippe.deryck@cs.kuleuven.be

Mario Henrique Cruz Torres

– mariohenrique.cruztorres@cs.kuleuven.be

Neline Van Ginkel

– neline.vanginkel@cs.kuleuven.be

Jan Spooren

– Jan.spooren@cs.kuleuven.be

2

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

About me...

Logic Meta Programming Language Soul

Reflection, language symbiosis

Co-evolving Design & Implementation In-memory object versioning

Aspect-oriented Programming

Traits (OO method composition model)

ClassBoxes (OO module composition model)

Data-centric component model for

hard-realtime embedded systems

Reengineering & Program Visualization

CleanC Eclipse Plugin

Dynamic scheduling of CPU/GPU tasks

+ simulator

High Performance Computing

1995 2001 2004 7 8 9 10 11 12 13 …

doctoral researcher (VUB)
Postdoc

(Bern, CH)
Professor

(ULB)
Principal Scientist (imec)

Professor (KU Leuven)

3

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

About me...

4

SAEM

Bayesian PK/PD

BWA-Cilk

elPrep

BWA-TBB-aln
BWA-TBB-mem

Scientific Workflow

Languages (initial results)

How to parallelize and distribute ?

How to deal with Big Data and Big Compute ?

How to let different stakeholder cooperate ?

High Performance Computing for Life Sciences

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Course Goals

“This course is concerned with the design of software systems.

The focus lies on object-oriented methods.

The primary objective is learning how to take design decisions by comparing positive and negative aspects

of possible design solutions with respect to analysis and requirements, design, implementation and

organizational impact.

The theoretical aspects of the course are applied in a group project where a non-trivial, existing (but new to

the students) application is extended with new functionality. “

5

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Prerequisite knowledge

“Solid knowledge of object-oriented concepts and practical experience with at least one object-oriented

programming language. Practical skills needed to develop software, such as the usage of an Integrated

Development Environment like Eclipse or Netbeans and version control software (such as subversion).”

6

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Main Topics

Overview of software development processes.

Object-oriented analysis and design using the UML modeling language.

Study, evaluation and usage of GRASP and design patterns.

Implementation techniques for realizing high quality object-oriented implementations.

Techniques for assessing the quality of the design and implementation of existing software systems.

7

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Course Material

Slides and links on the website of the course

http://roelwuyts.be/OSS-1617/

Material

– Craig Larman, Applying UML and Patterns – An Introduction to Object-Oriented
Analysis and Design and Iterative Development (3rd ed.), Prentice Hall, 2005.

– Design Patterns: Elements of Reusable Object-Oriented Software, E. Gamma, R.
Helm, R. Johnson, J. Vlissides.

– Refactoring: Improving the Design of Existing Code, M. Fowler, K. Beck, J. Brant,
W. Opdyke, D. Roberts.

– "No Silver Bullet: Essence and Accident in Software Engineering ", F.P. Brooks.

8

http://roelwuyts.be/OSS-1415/
http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Project: applying the theory in practice

Group Project

– Number of persons in a group not yet known

(depends on students following the course which is still subject to change)

Three iterations:

1. Investigate and evaluate an existing implementation

2. Analysis of an existing system

3. Extend it (Trade-offs!)

4. Decide what to modify to realize the extension

5. Refactor it

6. Clean up and maybe realize a smaller extension

9

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Project Effort

Effort of 120 hours / student.

It is possible that you spend more or less !

– notify me in time of possible discrepancies

10

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Escalation Policy

Groups do not always function smoothly

– But dealing with this is part of your education

In case of problems:

– discuss within group.

– if it cannot be resolved: mail to your assistant (with me in cc) to describe
the problem.

– assistant may decide to involve me if necessary.

In case of problems with assistant: contact me.

In case of problems with me: contact MA1 responsible.

11

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Course grading: First session

Score for Group Project defense (grade P)

Individual oral exam (grade I)

Grading Algorithm:

– If P <= 5 : final grade = P

– elif I <= 8: final grade = I

– else final grade = (P + I) / 2

If we find large work discrepancies within a group, specific grades for that
group/person can be given

– 0 is possible when not collaborating !

12

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Course grading: Second session

Second session

– No possibility to redo project

– New individual oral exam (I’)

• Same grading algorithm as first session but:

– I replaced with I’

13

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Project Defense

Each of you gets questions and answers. Then other group members can
provide more information.

Questions originate from your report, design and implementation.

You get two kinds of feedback:

– during the defense:our questions and comments

– right after the defense:

14

ok take

care

not

ok

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Grades

1st session:

– Final grade ≥ 10 : done!

– Final grade < 10 : redo in second session

2nd session:

– Final grade ≥ 10 : done!

– Final grade < 10 : credit not obtained

15

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Questions ?

16

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

About You

Let’s do an interactive “quiz”

– there is no right or wrong for most of the questions here; goal is for me to
learn your reflexes when faced with questions related to programming
language, design, or implementation.

17

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Is the following correct ?

18

“A message sent to super is sent to the parent of the object”

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

What is the result of the following expression?

class A {

public void m(A a) { System.out.println("1"); }

}

class B extends A {

public void m(B b) { System.out.println("2"); }

public void m(A a) { System.out.println("3"); }

}

B b = new B();

A a = b;

a.m(b);

19

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

What do you think of the following implementation?

// Return null to signify end of file

protected IToken fetchToken() throws EndOfFileException {

++count;

while (bufferStackPos >= 0) {

// Tokens don't span buffers, stick to our current one

char[] buffer = bufferStack[bufferStackPos];

int limit = bufferLimit[bufferStackPos];

int pos = bufferPos[bufferStackPos];

switch (buffer[pos]) {

case '_':

t = scanIdentifier();

if (t instanceof MacroExpansionToken)

continue;

return t;

case '#':

if (pos + 1 < limit && buffer[pos + 1] == '#') {

++bufferPos[bufferStackPos];

return newToken(IToken.tPOUNDPOUND);

}

// Should really check to make sure this is the first

// non whitespace character on the line

handlePPDirective(pos);

continue;

…

(390 lines of code in total)

20

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Reuse versus hack

Suppose you are responsible to add a new feature to an existing piece of
software. The design of the existing software makes this hard. How do you
decide whether to rewrite the existing software or whether to “hack in” the
new feature ?

21

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Understanding Existing Systems

Your boss wants you to quickly develop a new tool. You decide to start
from a large existing open-source application you found on SourceForge.

How do you start ?

22

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Object-Oriented Software Design Question

A restaurant menu consists of dishes, e.g. “Flemish stew”, “Black pudding
with apples” and “Chicken Royale with Champagne”. Each dish consists of
a number of ingredients and is either a starter, a main course or a dessert.
The menu shows for each dish an authenticity score (1, 2 or 3), a calory
score, as well as the price. Menus need to be printed in a variety of
languages (dutch, french, english, japanese, arabic; some left-to-right and
some right-to-left) and needs to be available on an interactive website
(where a picture is shown of the dish). The menus change frequently with
the seasons.

23

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why Software Engineering?

Problem Specification → Final Program

But ...

– Where did the specification come from?

– How do you know the specification corresponds to the user’s needs?

– How did you decide how to structure your program?

– How do you know the program actually meets the specification?

– How do you know your program will always work correctly?

– What do you do if the users’ needs change?

– How do you divide tasks up if you have more than a one-person team?

24

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

What is Software Engineering? (I)

Some Definitions and Issues

– “state of the art of developing quality software on time and within budget”

Trade-off between perfection and physical constraints

– Software engineering deals with real-world issues

State of the art!

– Community decides on “best practice” + life-long education

25

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

What is Software Engineering? (II)

“multi-person construction of multi-version software”

⎯ Parnas

Team-work

– Scale issue (“program well” is not enough) + Communication Issue

Successful software systems must evolve or perish

– Change is the norm, not the exception

26

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Communication and Modeling

Team-effort requires communication

Results have to be communicated externally

27

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

UML

Unified Modeling Language

De-facto standard that I expect everybody to know and follow

– working knowledge of at least the use case, class, sequence and
communication diagrams

– use throughout course (theory, practice, project)

Self-study

– I give a short overview

– You study

28

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

General Goals of UML

Model systems using OO concepts

Establish an explicit coupling to conceptual as well as executable artifacts

To create a modeling language usable by both humans and machines

Models different types of systems (information systems, technical systems,
embedded systems, real-time systems, distributed systems, system
software, business systems, UML itself, ...)

29

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

11 diagrams in UML 2

30

๏ Class diagram

๏ Internal Structure Diagram

๏ Collaboration diagram

๏ Component diagram

๏ Use case diagram

๏ State machine diagram

๏ Activity Diagram

๏ Sequence diagram

๏ Communication Diagram

๏ Deployment diagram

๏ Package diagram

Structural

Dynamic

Physical

Model Management

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Requirements Engineering and Use Cases

Requirements: documented need for what a system or project should do

– 37% of problems with software projects have to do with requirements

– 25% of the requirements change during the project (and 35-50% in large
projects)

Therefore: embrace change!

31

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Types of Requirements: FURPS+ categorization

32

Functional

features, capabilities

Usability

human factors, help, documentation

Reliability

frequency of failure, recoverability

Performance

Response times, throughput, accuracy, resource usage

Supportability

Adaptability, maintainability, configurability

+

implementation, interface, operations, packaging, legal

Use Cases

Non-functional

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Use Cases

Stories that describe usage of the system

– describe sequence of actions with an observable result for a specific actor

– used by all kinds of stakeholders

It does not describe the internal working of the system

– What, not How

– Responsibilities of the system are described

33

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Use Case Diagram

34

Cash register

system border

actor use case

association

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Fully Dressed Use Case Description

35

Use case: Process Sale

Primary Actor: Cashier

Stakeholders
and interests:

• Cashier: wants accurate, fast entry, and no payment errors, as
cash drawers shortages are deduced from his/her salary

• Customer: wants purchase and fast service with minimal effort.
Wants easily visible display of entered items and prices. Wants
proof of purchase to support returns.

• Manager, Government, Payment Company, ...

Precondition: Cashier is identified and authenticated

Success
Guarantee
(postcondition)

Sale is saved. Tax is correctly calculated. Receipt is generated.
Accounting and inventory are updated. Payment info is recorded.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Domain Modeling

A domain model describes meaningful concepts in the problem domain

– again about the what, not the how

– does not model design artifacts (how), but models conceptual artifacts,
real-world things

36

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Domain model for the Cash Register example

37

concept

attribute

association

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Class Diagrams

38

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Class Diagrams

39

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Interaction diagrams

UML Interaction diagrams

– model message-exchange between objects

2 kinds:

– Communication Diagrams – focus on interactions

– Sequence Diagrams – focus on time

a:ClassA b:ClassB

1: message2()

2: message3()message1()

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Interaction diagramma’s

UML Interaction diagrams

– model message-exchange between objects

2 kinds:

– Communication Diagrams – focus on interactions

– Sequence Diagrams – focus on time

b:ClassB

message2()

message3()

a:ClassA

message1()

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Communication Diagram Example

42

1: makePayment(cashTendered)

1.1: create(cashTendered)

:Register :Sale

:Payment

makePayment(cashTendered)

start message first internal message

instance association

parameter direction

follow-up message

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Sequence Diagram Example

43

: Register : Sale: User

msg1()
msg2()

msg3()

msg4()

msg5()

time instance

lifeline

activation

assocation

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Conclusion

This course is about (OO) software design

– Understand quality design and implementation

– Make reasoned design decisions

– Make trade-offs that balance quality, effort, design, and implementation

– Be able to communicate your decision

http://roelwuyts.be/OSS-1617/

44

http://roelwuyts.be/OSS-1415/

Design of Software Systems
(Ontwerp van SoftwareSystemen)

2 Basic OO Design

Roel Wuyts

2016-2017

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Acknowledgments

Tom Holvoet (KUL, Leuven, BE) for the GRASP pattern slides

Oscar Nierstrasz (University of Bern, CH) for the Tic Tac Toe example

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

The whole course in one slide ?

Basic OO Design Principles:

•Minimize Coupling

•Increase Cohesion

•Distribute Responsibilities

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Basic OO Design Principles

No matter whether you use forward engineering or re-engineering,
These basic OO Design Principles hold:

– Minimize Coupling

– Increase Cohesion

– Distribute Responsibilities

You should always strife to use and balance these principles

– they are fairly language- and technology independent

– processes, methodologies, patterns, idioms, ... all try to help to apply these
principles in practice

• It’s still your job to determine the best balance

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

4. Low Coupling Pattern

Pattern Low Coupling

Problem How to stimulate low independance, reduce impact of change and increase reuse?

Solution Assign responsibilities such that your design exhibits low

coupling.

Use this principle to evaluate and compare alternatives.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Low Coupling Pattern

 Which design is better?

 Coupling to stable libraries/classes?

 Key principle for evaluating choices

:Register :Sale

:Payment

makePayment() 1:makePayment()

1.1. create()

:Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

:Register
makePayment()

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Low Coupling Pattern

Coupling is a measure that shows how much a class is dependent on other
classes

• X depends on Y (~ X does not compile without Y):

• X has attribute of type Y

• X uses a service of Y

• X has method referencing Y (param, local variable)

• X inherits from Y (direct or indirect)

• X implements interface Y

• “evaluative” pattern:

• use it to evaluate alternatives

• try to reduce coupling

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Low Coupling Pattern

Advantages of low coupling:

– reduce impact of changes (isolation)

– increase understandibility (more self-contained)

– enhance reuse (independance)

Is not an absolute criterium

– Coupling is always there

– Therefore you will need to make trade-offs !

Inheritance is strong coupling !!

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Low Coupling Pattern: remarks

Aim for low coupling with all design decisions

Cannot be decoupled from other patterns

Learn to draw the line (experience)

– do not pursue low coupling in the extreme

• Bloated and complex active objects doing all the work

• lots of passive objects that act as simple data repositories

– OO Systems are built from connected collaborating objects

Coupling with standardized libraries is NOT a problem

Coupling with unstable elements IS a problem

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

5. High Cohesion Pattern

Pattern High Cohesion

Problem How to retain focus, understandability and control of objects, while obtaining low

coupling?

Solution Assign responsibilities such that the cohesion of an object remains high.

Use this principle to evaluate and compare alternatives.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

High Cohesion Pattern

 Cohesion: Object should have strongly related operations or responsibilities

 Reduce fragmentation of responsibilities (complete set of responsibility)

 To be considered in context => register cannot be responsible for all register-related tasks

:Register :Sale

:Payment

makePayment() 1:makePayment()

1.1. create()

:Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

:Register
makePayment()

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

High Cohesion Pattern

Cohesion is a measure that shows how strong responsibilities of a class
are coupled.

Is an “evaluative” pattern:

– use it to evaluate alternatives

– aim for maximum cohesion

• (well-bounded behavior)

Cohesion 

– number of methods  (bloated classes)

– understandability 

– reuse 

– maintainability 

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

High Cohesion Pattern: remarks

Aim for high cohesion in each design decision

degree of collaboration

– Very low cohesion: a class has different responsibilities in widely varying
functional domains

• class RDB-RPC-Interface: handles Remote Procedure Calls as well as access to relational
databases

– Low cohesion: a class has exclusive responsibility for a complex task in one
functional domain.

• class RDBInterface: completely responsible for accessing relational databases

• methods are coupled, but lots and very complex methods

…

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

High Cohesion Pattern: remarks

Aim for high cohesion in each design decision

degree of collaboration (ctd)

– Average cohesion: a class has exclusive ‘lightweight’ responsibilities from
several functional domains. The domains are logically connected to the class
concept, but not which each other

• a class Company that is responsible to manage employees of a company as well as the
financials

• occurs often in ‘global system’ classes !!

– High cohesion: a class has limited responsibilities in one functional domain,
collaborating with other classes to fulfill tasks.

• Class RDBInterface: partially responsible for interacting with relational databases

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example 1

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why is this bad ?

Client knows how Provider is implemented

– has to know that it uses an IndirectProvider

• uses the interface of Provider as well as of IndirectProvider

– Client and IndirectProvider are strongly coupled !

• Client has to use them together

• Changing either Provider or IndirectProvider impacts Client

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Reducing the Coupling

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Reducing Coupling impacts the design

The interfaces of the classes become more clear

– a method ‘speedUp()’ makes perfect sense: cohesion

Allows for more opportunity for reuse

– A subclass of Engine, “ElectricalEngine”, might not need a Carburetor at all

• This is transparent for Car

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Each unit should only talk to its friends;
don't talk to strangers

“Law of Demeter” / Don’t talk to strangers

You are only allowed to send messages to:

– yourself (self/this, super)

– an argument passed to you

– an object you create

or, more mechanically:

Lieberherr, Karl. J. and Holland, I., Assuring good style for object-oriented programs, IEEE Software, September 1989, pp 38-48

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example 2

void CVideoAppUi::HandleCommandL(TInt aCommand)

{

switch (aCommand)

{

case EAknSoftkeyExit:

case EAknSoftkeyBack:

case EEikCmdExit:

{ Exit(); break; }

// Play command is selected

case EVideoCmdAppPlay:

{ DoPlayL(); break; }

// Stop command is selected

case EVideoCmdAppStop:

{ DoStopL(); break; }

// Pause command is selected

case EVideoCmdAppPause:

{ DoPauseL(); break; }

// DocPlay command is selected

case EVideoCmdAppDocPlay:

{ DoDocPlayL(); break; }

......

Nokia S60 mobile video player 3gpp source code
http://www.codeforge.com/article/192637

procedural approach:

passing an int and using switch to decide which behavior

to execute based on that int

http://www.codeforge.com/read/192637/VideoAppUi.cpp__html
http://www.codeforge.com/read/192637/VideoAppUi.cpp__html

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why is this bad ?

Case (switch) statements in OO code are a sign of a bad design

– lack of polymorphism: procedural way to implement a choice between
alternatives

– hardcodes choices in switches, typically scattered in several places

• when the system evolves these places have to be updated, but are easy to miss

See also: Replace Conditional with Polymorphism
(http://sourcemaking.com/refactoring/replace-conditional-with-polymorphism)

http://sourcemaking.com/refactoring/replace-conditional-with-polymorphism

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Solution: Replace case by Polymorphism

void CVideoAppUi::HandleCommandL(Command aCommand)

{

aCommand.execute();

}

Create a Command class hierarchy, consisting of a (probably) abstract class
AbstractCommand, and subclasses for every command supported.
Implement execute on each of these classes:

– virtual void AbstractCommand::execute() = 0;

– virtual void PlayCommand::execute() { ... do play command ...};

– virtual void StopCommand::execute() { ... do stop command ...};

– virtual void PauseCommand::execute() { ... do pause command ...};

– virtual void DocPlayCommand::execute() { ... do docplay command ...};

– virtual void FileInfoCommand::execute() { ... do file info command ...};

OO approach:

passing an object and using polymorphism to

select behavior to execute

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Added advantage

These case statements occur wherever the command integer is used in the
original implementation

– you will quickly assemble a whole set of useful methods for these
commands

– Moreover, commands are then full-featured classes so they can share code,
be extended easily without impacting the client, ...

– They can also be used when adding more advanced functionalities such as
undo etc.

Have you noticed that the methods are shorter ?

Open question: can you think of disadvantages ?

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Stepping Back

Showed concrete examples (and solutions) of breaches of basic OO design
principles visible in code

– Fixing them improved the design!

Question: how can we avoid this ?

– be cautious ;-)

– get help by applying:

• Design principles and methodologies

– eg.: Responsibility Driven Design

• GRASP patterns, Design Patterns

• Idioms and Programming Practices

– use your head!

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Responsibility Driven Design

Metaphor – can compare to people

– Objects have responsibilities

– Objects collaborate

In RDD we ask questions like

– What are the responsibilities of this object ?

– Which roles does the object play ?

– Who does it collaborate with ?

Domain model

– classes do NOT have responsibilities!

– they merely represent concepts + relations

– design is about realizing the software  someone has to do the work …
who ??

Understanding Responsibilities

is key to good OO Design

http://www.wirfs-brock.com/PDFs/Responsibility-Driven.pdf

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

RDD Process

Design = incremental journey of discovery and refinement

– build knowledge to take proper decisions

– start by looking for classes of key objects

• can use the domain model for inspiration !

– then think about what actions must be accomplished, and who will
accomplish them - how to accomplish them is for later !

• Leads to responsibilities

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Responsibilities

Two types of responsibilities

– Doing

• Doing something itself (e.g. creating an object, doing a calculation)

• Initiating action in other objects

• Controlling and coordinating activities in other objects

– Knowing

• Knowing about private encapsulated data

• Knowing about related objects

• Knowing about things it can derive or calculate

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Object Collaboration

Objects collaborate: one object will request something from another object

To find collaborations answer the following questions:

– What other objects need this result or knowledge?

– Is this object capable of fulfilling this responsibility itself?

– If not, from what other objects can or should it acquire what it needs?

Cfr: Coupling and Cohesion !

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: Tic Tac Toe

Requirements:

“A simple game in which one player marks down only crosses and another
only ciphers [zeroes], each alternating in filling in marks in any of the nine
compartments of a figure formed by two vertical lines crossed by two
horizontal lines, the winner being the first to fill in three of his marks in any
row or diagonal.”

— Random House Dictionary

We should design a program that implements the rules of Tic Tac Toe.

73

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Setting Scope

Questions:

– Should we support other games?

– Should there be a graphical UI?

– Should games run on a network? Through a browser?

– Can games be saved and restored?

A monolithic paper design is bound to be wrong!

74

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Setting Scope

A monolithic paper design is bound to be wrong?

Let’s follow an iterative development strategy:

– limit initial scope to the minimal requirements that are interesting

– grow the system by adding features and test cases

– let the design emerge by refactoring roles and responsibilities

How much functionality should you deliver in the first version of a system?

– Select the minimal requirements that provide value to the client.

75

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Roadmap

TicTacToe example

– Identifying objects

– Scenarios

– Test-first development

– Printing object state

– Testing scenarios

– Representing responsibilities as contracts

76

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Tic Tac Toe Objects

77

Some objects can be identified from the requirements:

Objects Responsibilities

Game Maintain game rules

Player
Make moves

Mediate user interaction

Compartment Record marks

Figure (State) Maintain game state

Entities with clear responsibilities are more likely to end up as

objects in our design.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Tic Tac Toe Objects ...

78

Others can be eliminated:

Non-Objects Justification

Crosses, ciphers Same as Marks

Marks Value of Compartment

Vertical lines Display of State

Horizontal lines ditto

Winner State of Player

Row View of State

Diagonal ditto

✎How can you tell when you have the “right” set of objects?
✔Each object has a clear and natural set of responsibilities.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Missing Objects

Now we check if there are unassigned responsibilities:

– Who starts the Game?

– Who is responsible for displaying the Game state?

– How do Players know when the Game is over?

Let us introduce a Driver that supervises the Game.

? How can you tell if there are objects missing in your design?

– When there are responsibilities left unassigned.

79

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Roadmap

TicTacToe example

– Identifying objects

– Scenarios

– Test-first development

– Printing object state

– Testing scenarios

– Representing responsibilities as contracts

80

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Scenarios

81

A scenario describes a typical sequence of interactions:

Are there other equally valid scenarios for this problem?

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Version 0 — skeleton

Our first version does very little!

? How do you iteratively “grow” a program?

– Always have a running version of your program.

82

class GameDriver {

static public void main(String args[]) {

TicTacToe game = new TicTacToe();

do { System.out.print(game); }

while(game.notOver());

}

public class TicTacToe {

public boolean notOver() { return false; }

public String toString() { return("TicTacToe\n");}

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Roadmap

TicTacToe example

– Identifying objects

– Scenarios

– Test-first development

– Printing object state

– Testing scenarios

– Representing responsibilities as contracts

83© O. Nierstrasz

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Version 1 — game state

We will use chess notation to access the game state

– Columns ‘a’ through ‘c’

– Rows ‘1’ through ‘3’

? How do we decide on the right interface?

– First write some tests!

84

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Test-first development

85

public class TicTacToeTest {

private TicTacToe game;

@Before public void setUp() {

super.setUp();

game = new TicTacToe();

}

@Test public void testState() {

assertTrue(game.get('a','1') == ' ');

assertTrue(game.get('c','3') == ' ');

game.set('c','3','X');

assertTrue(game.get('c','3') == 'X');

game.set('c','3',' ');

assertTrue(game.get('c','3') == ' ');

assertFalse(game.inRange('d','4'));

}

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Generating methods

86

Test-first programming can drive the development of the class interface …

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Roadmap

TicTacToe example

– Identifying objects

– Scenarios

– Test-first development

– Printing object state

– Testing scenarios

– Representing responsibilities as contracts

87

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Representing game state

88

public class TicTacToe {

private char[][] gameState;

public TicTacToe() {

gameState = new char[3][3];

for (char col='a'; col <='c'; col++)

for (char row='1'; row<='3'; row++)

this.set(col,row,' ');

}

...

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Checking pre-conditions

set() and get() translate from chess notation to array indices.

89

public void set(char col, char row, char mark) {

assert(inRange(col, row)); // NB: precondition

gameState[col-'a'][row-'1'] = mark;

}

public char get(char col, char row) {

assert(inRange(col, row));

return gameState[col-'a'][row-'1'];

}

public boolean inRange(char col, char row) {

return (('a'<=col) && (col<='c')

&& ('1'<=row) && (row<='3'));

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Printing the State

By re-implementing TicTacToe.toString(), we can view the state of the
game:

? How do you make an object printable?

– Override Object.toString()

90

3 | |

---+---+---

2 | |

---+---+---

1 | |

a b c

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

TicTacToe.toString()

Use a StringBuilder (not a String) to build up the representation:

PS: newer version of Java have improved on using String directly

91

public String toString() {

StringBuffer rep = new StringBuilder();

for (char row='3'; row>='1'; row--) {

rep.append(row);

rep.append(" ");

for (char col='a'; col <='c'; col++) { ... }

...

}

rep.append(" a b c\n");

return(rep.toString());

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Roadmap

TicTacToe example

– Identifying objects

– Scenarios

– Test-first development

– Printing object state

– Testing scenarios

– Representing responsibilities as contracts

92

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Version 2 — adding game logic

We will:

Add test scenarios

Add Player class

Add methods to make moves, test for winning

93

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refining the interactions

94

Updating the Game and
printing it should be separate
operations.

The Game should ask the
Player to make a move, and
then the Player will attempt
to do so.

We will want both real and test Players, so the Driver should
create them.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Testing scenarios

Our test scenarios will play and test scripted games

95

@Test public void testXWinDiagonal() {

checkGame("a1\nb2\nc3\n", "b1\nc1\n", "X", 4);

}

// more tests …

public void checkGame(String Xmoves, String Omoves,

String winner, int squaresLeft) {

Player X = new Player('X', Xmoves);// a scripted player

Player O = new Player('O', Omoves);

TicTacToe game = new TicTacToe(X, O);

GameDriver.playGame(game);

assertTrue(game.winner().name().equals(winner));

assertTrue(game.squaresLeft() == squaresLeft);

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Running the test cases

96

Player O moves: O at c1

3 | |

---+---+---

2 | X |

---+---+---

1 X | O | O

a b c

Player X moves: X at c3

3 | | X

---+---+---

2 | X |

---+---+---

1 X | O | O

a b c

game over!

3 | |

---+---+---

2 | |

---+---+---

1 | |

a b c

Player X moves: X at a1

3 | |

---+---+---

2 | |

---+---+---

1 X | |

a b c

...

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

The Player

We use different constructors to make real or test Players:

A real player reads from the standard input stream:

This constructor just calls another one ...

...

97

public class Player {

private final char mark;

private final BufferedReader in;

public Player(char mark) {

this(mark, new BufferedReader(

new InputStreamReader(System.in)

));

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Player constructors ...

But a Player can be constructed that reads its moves from any input
buffer:

This constructor is not intended to be called directly.

...

98

protected Player(char initMark, BufferedReader initIn) {

mark = initMark;

in = initIn;

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Player constructors ...

A test Player gets its input from a String buffer:

The default constructor returns a dummy Player representing “nobody”

99

public Player(char mark, String moves) {

this(mark, new BufferedReader(

new StringReader(moves)

));

}

public Player() { this(' '); }

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Roadmap

TicTacToe example

– Identifying objects

– Scenarios

– Test-first development

– Printing object state

– Testing scenarios

– Representing responsibilities as contracts

100

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Tic Tac Toe Contracts

Explicit invariants:

– turn (current player) is either X or O

– X and O swap turns (turn never equals previous turn)

– game state is 3×3 array marked X, O or blank

– winner is X or O iff winner has three in a row

Implicit invariants:

– initially winner is nobody; initially it is the turn of X

– game is over when all squares are occupied, or there is a winner

– a player cannot mark a square that is already marked

Contracts:

– the current player may make a move, if the invariants are respected
101

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Encoding the contract

We must introduce state variables to implement the contracts

102

public class TicTacToe {

static final int X = 0; // constants

static final int O = 1;

private char[][] gameState;

private Player winner = new Player(); // = nobody

private Player[] player;

private int turn = X; // initial turn

private int squaresLeft = 9;

...

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Supporting test Players

The Game no longer instantiates the Players, but accepts them as
constructor arguments:

103

public TicTacToe(Player playerX, Player playerO)

{ // ...

player = new Player[2];

player[X] = playerX;

player[O] = playerO;

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Invariants

These conditions may seem obvious, which is exactly why they should be
checked ...

Assertions and tests often tell us what methods should be implemented,
and whether they should be public or private.

104

private boolean invariant() {

return (turn == X || turn == O)

&& (this.notOver()

|| this.winner() == player[X]

|| this.winner() == player[O])

&& (squaresLeft < 9 // else, initially:

|| turn == X && this.winner().isNobody());

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Delegating Responsibilities

When Driver updates the Game, the Game just asks the Player to make a
move:

Note that the Driver may not do this directly!

...

105

public void update() throws IOException {

player[turn].move(this);

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Delegating Responsibilities ...

The Player, in turn, calls the Game’s move() method:

106

public void move(char col, char row, char mark) {

assert(notOver());

assert(inRange(col, row));

assert(get(col, row) == ' ');

System.out.println(mark + " at " + col + row);

this.set(col, row, mark);

this.squaresLeft--;

this.swapTurn();

this.checkWinner();

assert(invariant());

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Small Methods

Introduce methods that make the intent of your code clear.

Well-named variables and methods typically eliminate the need for
explanatory comments!

Use comments to explain non obvious design, algorithmic or
implementation choices

107

public boolean notOver() {

return this.winner().isNobody()

&& this.squaresLeft() > 0;

}

private void swapTurn() {

turn = (turn == X) ? O : X;

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Accessor Methods

Accessor methods protect clients from changes in implementation:

? When should instance variables be public?

– Almost never! Declare public accessor methods instead.

108

public Player winner() {

return winner;

}

public int squaresLeft() {

return this.squaresLeft;

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

getters and setters in Java

Accessors in Java are known as “getters” and “setters”.

– Accessors for a variable x should normally be called getx() and setx()

Frameworks such as EJB depend on this convention!

109

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Code Smells — TicTacToe.checkWinner()

Duplicated code stinks!

How can we clean it up?

110

for (char col='a'; col <='c'; col++) {

player = this.get(col,'1');

if (player == this.get(col,'2')

&& player == this.get(col,'3')) {

this.setWinner(player);

return;

}

}

player = this.get('b','2');

if (player == this.get('a','1')

&& player == this.get('c','3')) {

this.setWinner(player);

return;

}

if (player == this.get('a','3')

&& player == this.get('c','1')) {

this.setWinner(player);

return;

}

}

private void checkWinner()

{

char player;

for (char row='3'; row>='1'; row--) {

player = this.get('a',row);

if (player == this.get('b',row)

&& player == this.get('c',row)) {

this.setWinner(player);

return;

}

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

GameDriver

In order to run test games, we separated Player instantiation from Game
playing:

How can we make test scenarios play silently?

111

public class GameDriver {

public static void main(String args[]) {

try {

Player X = new Player('X');

Player O = new Player('O');

TicTacToe game = new TicTacToe(X, O);

playGame(game);

} catch (AssertionException err) {

...

}

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Patterns

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Bit of history...

Christoffer Alexander

– “The Timeless Way of Building”, Christoffer Alexander, Oxford University
Press, 1979, ISBN 0195024028

– Structure of the book is magnificent (cfr writing your master dissertation…)

• Christmass is close ;-)

More advanced than what computer science uses

– only the simple parts got mainstream

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Alexander’s patterns

“Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem,
in such a way that you can use this solution a million times over, without
doing it the same way twice”

– Alexander uses this as part of the solution to capture the “quality without a
name”

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Illustrating Recurring Patterns...

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Essential Elements in a Pattern

Pattern name

– Increase of design vocabulary

Problem description

– When to apply it, in what context to use it

Solution description (generic !)

– The elements that make up the design, their relationships, responsibilities,
and collaborations

Consequences

– Results and trade-offs of applying the pattern

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

GRASP Patterns

guiding principles to help us assign responsibilities

GRASP “Patterns” – guidelines

• Controller

• Creator

• Information Expert

• Low Coupling

• High Cohesion

• Polymorphism

• Pure Fabrication

• Indirection

• Protected Variations

Hs 17

Hs 25

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

GRASP Patterns

We already saw High Coupling and Low Cohesion before

Let’s look at some more GRASP patterns now…

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

1. Controller Pattern

Who is responsible for handling Systemoperations ?

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

???

Cashier

:SaleJFrame

onEnterItem()

1: enterItem(itemID, qty)

Presentation Layer
(Java applet)

Domain Layer

event

systemoperation

controller

presses button

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Controller Pattern

Pattern Controller

Problem Who is responsible for handling system events ?

Solution Assign the responsibility to a class C representing one of the

following choices:

• C is a facade controller: it represents the overall system, a

root object, the device that runs the software, or a major

subsystem.

• C is a use case or session controller: it represents an

artificial objects (see Pure Fabrication pattern) that handles

all events from a use case or session

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

System operations and System events

From analysis to design:

– Analysis: can group system operations in a conceptual “System” class

– Design: give responsibility for processing system operations to controller
classes

Controller classes are not part of the User Interface

Model-View-Controller (MVC)

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Who controls System events?

enterItem(UPC, quantity)

:SystemCashier

endSale()

makePayment(amount)

:POSSystem
enterItem(upc, quantity)

:Store
enterItem(upc, quantity)

:ProcessSaleHandler
enterItem(upc, quantity)

overall system

root object

artificial object

:RegisterDevice
enterItem(upc, quantity)

device

choice depends
on other factors

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Controller Pattern: Guidelines

Limit the responsibility to “control and coordination”

– Controller = delegation pattern

– delegate real work to real objects

– Common mistake: fat controllers with too much behavior

Only support a limited number of events in Facade controllers

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Controller Pattern: Use Case Controller Guidelines

Use Case (UC) controllers

– consider when too much coupling and not enough cohesion in other
controllers (factor system events)

– Treat all UC events in the same controller class

– Allow control on the order of events

– Keep information on state of UC (statefull session)

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Controller Pattern: Problems and Solutions

“Bloated” controllers

– symptoms

• a single controller handling all system events

• controller not delegating work

• controller with many attributes, with system information, with duplicated information

– solutions

• add Use Case controllers

• design controllers that delegate tasks

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Controller Pattern: Advantages

Increased potential for reuse

• domain-level processes handled by domain layer

• decouple GUI from domain level !

• Different GUI or different ways to access the domain level

Reason about the state of the use case

• guarantee sequence of system operations

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example applying Controller Pattern

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

:POST

Cashier

:POSTApplet

onEnterItem()

1: enterItem(upc, qty)

Presentation Layer
(Java applet)

Domain Layer

event

systemoperation

controller

presses button

:Sale
1.1: makeLineItem(upc, qty)

makeLineItem(upc, qty)

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: incorrect!

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

:POST

Cashier

:POSTApplet

onEnterItem()

1: enterItem(upc, qty)

Presentation Layer
(Java applet)

Domain Layer

event

systemoperation

controller

presses button

:Sale

makeLineItem(upc, qty)

Avoid !

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

2. Creator Pattern

Pattern Creator

Problem Who is responsible for creating instances of classes ?

Solution Assign a class B to create instances of a class A if:

• B is a composite of A objects (composition/aggregation)

• B contains A objects (contains)

• B holds instances of A objects (records)

• B closely collaborates with A objects

• B has the information needed for creating A objects

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Creator Pattern: example

Creation of “SalesLineItem” instances

:SalesLineItem

1: create(quantity)

:Sale
makeLineItem(quantity)

Sales
LineItem

quantity

Product
Specification

description
price
UPC

Described-by*

Contains

1.. *

Sale

date
time

total()
makeLineItem()

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Creator Pattern: Inspiration from the Domain Model

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

3. Information Expert Pattern

A very basic principle of responsibility assignment

(cfr Responsibility Driven questions seen earlier)

Assign a responsibility to the object that has the information necessary to
fulfill it -the information expert

“That which has the information, does the work”

Related to the principle of “low coupling”

 Localize work

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Expert Pattern

Pattern (Information) Expert

Problem What is the basic principle to assign responsibilities to objects ?

Solution Assign responsibility to the class that has the information to fulfill it (the

information expert)

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Expert Pattern: remarks

Real-world analogy

– who predicts gains/losses in a company?

• the person with access to the date (Chief Financial Officer)

Needed information to work out ‘responsibility’
=> spread over different objects

– “partial” experts that collaborate to obtain global information (interaction is
required)

Not necessarily the best solution (e.g. database access)

– See low coupling & high cohesion

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Expert Pattern: example 1

Example: Who is responsible for knowing the total of a “Sale”?

Who possesses the information?

Sales
LineItem

quantity

Product
Specification

description
price
itemID

Described-by*

Contains

1.. *

Sale

date
time

domain model

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

class diagram

(design model)

:Sale
t = getTotal()

:Product
Specification

1.1: p = getPrice()

lineItems[i]:SalesLineItem

1*: st =getSubtotal()

Expert Pattern: example 1

Sales
LineItem

quantity

Product
Specification

description
price
itemID

Described-by

*

Contains

1.. *

Sale

date
time

getTotal()

getSubtotal()

getPrice()

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

What object should be responsible for knowing

ProductSpecifications, given a key?
Take inspiration from the domain model

Expert Pattern: Example 2

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applying Information Expert

:Map
<ProductDescription>

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Design for “enterItem”: 3 patterns applied

:Map
<ProductDescription>

:List
<SalesLineItem>

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

GRASP Patterns

guiding principles to help us assign responsibilities

GRASP “Patterns” – guidelines

• Controller

• Creator

• Information Expert

• Low Coupling

• High Cohesion

• Polymorphism

• Pure Fabrication

• Indirection

• Protected Variations

Hs 17

Hs 25

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

6. Polymorphism

Pattern Polymorphism

Problem How handle alternatives based on type? How to create pluggable software

components?

Solution When related alternatives or behaviours vary by type (class), assign

responsibility for the behavior -using polymorphic operations- to the types

for which the behavior varies.

Note: Not really a pattern but basic OO principle !

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example

void CVideoAppUi::HandleCommandL(TInt aCommand)

{

switch (aCommand)

{

case EAknSoftkeyExit:

case EAknSoftkeyBack:

case EEikCmdExit:

{ Exit(); break; }

// Play command is selected

case EVideoCmdAppPlay:

{ DoPlayL(); break; }

// Stop command is selected

case EVideoCmdAppStop:

{ DoStopL(); break; }

// Pause command is selected

case EVideoCmdAppPause:

{ DoPauseL(); break; }

// DocPlay command is selected

case EVideoCmdAppDocPlay:

{ DoDocPlayL(); break; }

......

Nokia S60 mobile video player 3gpp source code
http://www.codeforge.com/article/192637

procedural approach:

passing an int and using switch to decide which behavior

to execute based on that int

http://www.codeforge.com/read/192637/VideoAppUi.cpp__html
http://www.codeforge.com/read/192637/VideoAppUi.cpp__html

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Solution: Replace case by Polymorphism

void CVideoAppUi::HandleCommandL(Command aCommand)

{

aCommand.execute();

}

Create a Command class hierarchy, consisting of a (probably) abstract class
AbstractCommand, and subclasses for every command supported.
Implement execute on each of these classes:

– virtual void AbstractCommand::execute() = 0;

– virtual void PlayCommand::execute() { ... do play command ...};

– virtual void StopCommand::execute() { ... do stop command ...};

– virtual void PauseCommand::execute() { ... do pause command ...};

– virtual void DocPlayCommand::execute() { ... do docplay command ...};

– virtual void FileInfoCommand::execute() { ... do file info command ...};

OO approach:

passing an object and using polymorphism to

select behavior to execute

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

7. Pure Fabrication Pattern

Pattern Pure Fabrication

Problem What object should have the responsibility, when you do not want to violate High

Cohesion and Low Coupling, or other goals, but solutions offered by Expert (for

example) are not appropriate?

Solution Assign a cohesive set of responsibilities to an artificial or convenience class

that does not represent a problem domain concept but is purely imaginary

and fabricated to obtain a pure design with high cohesion and low coupling.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Pure Fabrication Pattern

Where no appropriate class is present: invent one

– Even if the class does not represent a problem domain concept

– “pure fabrication” = making something up: do when we’re desperate!

This is a compromise that often has to be made to preserve cohesion and
low coupling

– Remember: the software is not designed to simulate the domain, but
operate in it

– The software does not always have to be identical to the real world

• Domain Model ≠ Design model

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Pure Fabrication Example

Suppose Sale instances need to be saved in a database

Option 1: assign this to the Sale class itself (Expert pattern)

– Implications of this solution:

• auxiliary database-operations need to be added as well

• coupling with particular database connection class

• saving objects in a database is a general service

Option 2: create PersistentStorage class

– Result is generic and reusable class with low coupling and high cohesionPure Fabrication

=> Low Coupling

High Cohesion

Expert

=>High Coupling

Low Cohesion

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

8. Indirection Pattern

Pattern Indirection

Problem Where to assign a responsibility to avoid direct coupling between two (or more)

things? How to de-couple objects so that low coupling is supported and reuse

potential remains higher?

Solution Assign the responsibility to an intermediate object to mediate

between other components or services so that they are not

directly coupled.

This intermediary creates an indirection between the other

components.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Indirection Pattern

A common mechanism to reduce coupling

Assign responsibility to an intermediate object to decouple two
components

– coupling between two classes of different subsystems can introduce
maintenance problems

“most problems in computer science can be solved by another level of
indirection”

– A large number of design patterns are special cases of indirection (Adapter,
Facade, Observer)

Sale TaxSystemTaxSystemAdapter

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

9. Protected Variations Pattern

Pattern Protected Variations

Problem How to design objects, subsystems, and systems so that the variations or

instability of these elements does not have an undesirable impact on other

elements ?

Solution Identify points of predicted variation or instability; assign responsibilities to

create a stable interface around them.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Protected Variations – example

Video game companies make money by creating a game engine

– many games use the same engine

– what if a game is to be ported to another console ???

• a wrapper object will have to delegate 3D graphics drawing to different console-level
commands

• the wrapper is simpler to change than the entire game and all of its facets

Wrapping the component in a stable interface means that when variations
occur, only the wrapper class need be changed

– In other words, changes remain localized

– The impact of changes is controlled

FUNDAMENTAL PRINCIPLE IN SW DESIGN

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Protected Variations – Example

Open DataBase Connectivity (ODBC/JDBC)

– These are packages that allow applications to access databases in a DB-
independent way

• In spite of the fact that databases all use slightly different methods of communication

• It is possible due to an implementation of Protected Variations

– Users write code to use a generic interface

• An adapter converts generic method calls to DB and vice versa

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Conclusion

Always try to apply and balance basic OO Design Principles

– Minimize Coupling

– Increase Cohesion

– Distribute Responsibilities

Use and learn from established sources of information

– Responsibility Driven Design

– GRASP patterns

• Design Patterns: see later

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

References

Rebecca Wirfs-Brock, Alan McKean, Object Design — Roles,
Responsibilities and Collaborations, Addison-Wesley, 2003.

http://www.wirfs-brock.com/PDFs/Responsibility-Driven.pdf

Craig Larman, Applying UML and Patterns – An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd ed.),
Prentice Hall, 2005.

http://www.wirfs-brock.com/PDFs/Responsibility-Driven.pdf

Design of Software Systems
(Ontwerp van SoftwareSystemen)

3 Design Patterns

Roel Wuyts

2016-2017

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Warm-up Exercise

We need a design to be able to print different kinds of text (ASCII and
PostScript) on different kinds of printers (ASCIIPrinter and PSPrinter).

ASCIIPrinters can only print ASCII text,
but PostscriptPrinters can print Postscript text as well as ASCIIText, after
internally converting ASCIIText to Postscript text.

New types of printers and texts will be added in the near future.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Alexander’s patterns

“Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem,
in such a way that you can use this solution a million times over, without
doing it the same way twice”

– Alexander uses this as part of the solution to capture the “quality without a
name”

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Illustrating Recurring Patterns...

Osio (China)

Zurich (Switzerland)

Singapore (Thailand)

Beijing (China)

Brussels (Belgium)

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Alert!

Do not overreact seeing all these patterns!

Do not apply too many patterns!

Look at the trade-offs!

Most patterns makes systems more complex!

– but address a certain need.

As always: do good modeling.

– First start your design and note problems or difficulties,

– then propose multiple potential solutions with different trade-offs,

• potentially using patterns,

– then take motivated decision

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Design Patterns

A Design Pattern is a pattern that captures a solution to a recurring design
problem

– It is not a pattern for implementation problems

– It is not a ready-made solution that has to be applied

• It’s still up to you !

• You can simply use the pattern for inspiration,

• Or only apply part of the design pattern

• Remember the basic OO design principles and use them to weigh your design

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Adapt to suit taste, allergies, nr. of people, available ingredients, …

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Design Patterns

Example:

– “We are implementing a drawing application. The application allows the user
to draw several kinds of figures (circles, squares, lines, polymorphs, bezier
splines). It also allows to group these figures (and ungroup them later).
Groups can then be moved around and are treated like any other figure.”

Look at Composite Design Pattern

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Pattern structure

A design pattern is a kind of blueprint

Consists of different parts

– All of these parts make up the pattern!

– When we talk about the pattern we therefore mean all of these parts
together

• not only the class diagram...

Tip: remember this for the exam – know your complete pattern

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why Patterns?

Smart

– Elegant solutions that a novice would not think of

Generic

– Independent on specific system type, language

• Although biased towards statically-typed class-based OO languages (C++, Java, …)

Well-proven

– Successfully tested in several systems

Simple

– Combine them for more complex solutions

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

GoF Design Pattern Book

Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995

– Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (Gang-of-Four
(GoF))

Book is still very relevant today but (depending on edition):

– Original book uses OMT notation (analogous to UML)

– illustrations are in C++

• Principles valid across OO languages!

• Versions of book exists with illustrations in Java, …

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

GoF Design Pattern Book

23 Design Patterns

Classification

– according to purpose

– according to problems they solve (p. 24-25)

– according to degrees of freedom (table 1.2, p. 30)

Goal is to make it easy to find a pattern for your problem

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Design Pattern Relationships

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Visitor

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Visitor

Category

– Behavioral

Intent

– Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates.

Motivation

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Motivation (cont)

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applicability

An object structure contains many classes of objects with differing
interfaces and you want to perform operations on these objects that
depend on their concrete classes.

Many distinct and unrelated operations need to be performed on objects in
an object structure an you want to avoid “polluting” their classes with
these operations.

The classes defining the object structure rarely change but you often want
to define new operations over the structure.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Structure

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Sequence

Cfr. Double Dispatch - this is key to this pattern in order to link concrete elements and concrete visitors !

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants

Visitor

– Declares a Visit operation for each class of ConcreteElement in the object
structure.

– The operations name and signature identifies the class that sends the Visit
request.

ConcreteVisitor

– Implements each operation declared by Visitor.

– Each operation implements a fragment of the algorithm for the
corresponding class of object in the object structure.

– Provides the context for the algorithm and stores its state (often
accumulating results during traversal).

…

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants (cont)

Element

– Defines an accept operation that takes a Visitor as an argument.

ConcreteElement

– Implements an accept operation that takes a visitor as an argument.

ObjectStructure

– Can enumerate its elements.

– May provide a high-level interface to allow the visitor to visit its elements.

– May either be a Composite or a collection such as a list or set.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Collaborations

A client that uses the visitor pattern must create a ConcreteVisitor object
and then traverse the object structure visiting each element with the
Visitor.

When an element is visited, it calls the Visitor operation that corresponds
to its class. The element supplies itself as an argument to this operation.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

Makes adding new operations easy.

– a new operation is defined by adding a new visitor (in contrast, when you
spread functionality over many classes each class must be changed to
define the new operation).

Gathers related operations and separates unrelated ones.

– related behavior is localised in the visitor and not spread over the classes
defining the object structure.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences (cont)

Adding new ConcreteElement classes is hard.

– each new ConcreteElement gives rise to a new abstract operation in Visitor
and a corresponding implementation in each ConcreteVisitor.

Allows visiting across class hierarchies.

– an iterator can also visit the elements of an object structure as it traverses
them and calls operations on them but all elements of the object structure
then need to have a common parent. Visitor does not have this restriction.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences (cont)

Accumulating state

– Visitor can accumulate state as it proceeds with the traversal. Without a
visitor this state must be passed as an extra parameter of handled in global
variables.

Breaking encapsulation

– Visitor’s approach assumes that the ConcreteElement interface is powerful
enough to allow the visitors to do their job. As a result the pattern ofthen
forces to provide public operations that access an element’s internal state
which may compromise its encapsulation.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Known Uses

In the Smalltalk-80 compiler.

In 3D-graphics: when three-dimensional scenes are represented as a
hierarchy of nodes, the Visitor pattern can be used to perform different
actions on those nodes.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Visitor Pattern

So, we’ve covered the visitor pattern as found in the book

– Are we done?

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Decisions, decisions …

visit(OperationA a)

visit(OperationB b)

vs

visitOperationA(OperationA a)

visitOperationB(OperationB b)

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Short Feature...

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

What is the result of the following expression?

class A {

public void m(A a) { System.out.println("1"); }

}

class B extends A {

public void m(B b) { System.out.println("2"); }

public void m(A a) { System.out.println("3"); }

}

B b = new B();

A a = b;

a.m(b);

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Main Feature...

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Visiting all Elements in the CDT Parsetree

public abstract class ASTVisitor {

public int visit(IASTTranslationUnit tu) { return PROCESS_CONTINUE; }

public int visit(IASTName name) { return PROCESS_CONTINUE; }

public int visit(IASTDeclaration declaration) { return PROCESS_CONTINUE; }

public int visit(IASTInitializer initializer) { return PROCESS_CONTINUE; }

public int visit(IASTParameterDeclaration parameterDeclaration) { return PROCESS_CONTINUE; }

public int visit(IASTDeclarator declarator) { return PROCESS_CONTINUE; }

public int visit(IASTDeclSpecifier declSpec) { return PROCESS_CONTINUE; }

public int visit(IASTExpression expression) { return PROCESS_CONTINUE; }

public int visit(IASTStatement statement) { return PROCESS_CONTINUE; }

public int visit(IASTTypeId typeId) { return PROCESS_CONTINUE; }

public int visit(IASTEnumerator enumerator) { return PROCESS_CONTINUE; }

public int visit(IASTProblem problem) { return PROCESS_CONTINUE; }

}

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

To Arms! The Short Feature is Attacking the Main Feature

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Advanced Visitor Discussions

When looking more closely at the visitor and its implementation, we can
discuss a number of things in more detail:

– Who controls the traversal?

– What is the granularity of the visit methods?

– Does there have to be a one-on-one correspondence between Element
classes and visit methods ?

– …

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Composite

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Composite

Category

– Structural

Intent

– Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly.

Motivation

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Motivation (cont)

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applicability

Use the Composite Pattern when:

– you want to represent part-whole hierarchies of objects.

– you want clients to be able to ignore the difference between compositions of
objects and individual objects. Clients will treat all objects in the composite
structure uniformly.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Structure

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants

Component

– Declares the interface for objects in the composition.

– Implements default behaviour for the interface common to all classes, as
appropriate.

– Declares an interface for accessing and managing its child components.

Leaf

– Represents leaf objects in the composition. A leaf has no children.

– Defines behaviour for primitive objects in the composition.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants (cont)

Composite

– defines behaviour for components having children.

– stores child components.

– implements child-related operations in the Component interface.

Client

– manipulates objects in the composition through the Component interface.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Collaborations

Clients use the Component class interface to interact with objects in the
composite structure. Leaves handle the requests directly. Composites
forward requests to its child components.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

Defines class hierarchies consisting of primitive and composite objects.

Makes the client simple. Composite and primitive objects are treated
uniformly (no cases).

Eases the creation of new kinds of components.

Can make your design overly general.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Known Uses

Can be found in almost all object oriented systems.

The original View class in Smalltalk Model / View / Controller was a
composite.

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Questions

How does the Composite pattern help to consolidate system-wide
conditional logic?

Would you use the composite pattern if you did not have a part-whole
hierarchy? In other words, if only a few objects have children and almost
everything else in your collection is a leaf (a leaf that has no children),
would you still use the composite pattern to model these objects?

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Patterns Catalogue

– Command

– Decorator

– Strategy

– Factory Method

– Abstract Factory

– Singleton

– Proxy

– Adapter

– Observer

– Chain of Responsibility

– FlyWeight

– Facade

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Wrap-up

Architectures

"can't be made, but only generated, indirectly, by the ordinary actions of
the people, just as a flower cannot be made, but only generated from the
seed." (Alexander)

– patterns describe such building blocks

– applying them implicitly changes the overall structure (architecture)

– whether it is on classes, components, or people

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Conclusion

Can you answer this?

– How does Strategy improve coupling and cohesion?

– Does Abstract Factory says the same than the Creator GRASP Pattern?

– Can you give examples of patterns that can be used together ?

– When does it make sense to combine the Iterator and the Composite
Pattern ?

Design of Software Systems

(Ontwerp van SoftwareSystemen)

4 Metrics and Software Visualization

Roel Wuyts

2016-2017

Roel Wuyts
Creative Commons License 4 203

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Acknowledgements

Slides adopted, with permission, from Prof. Dr. Michele Lanza

http://www.inf.unisi.ch/faculty/lanza/

http://www.inf.unisi.ch/faculty/lanza/

Lecture 04

Metrics & Problem Detection

Tom de Marco

You cannot control what you cannot measure

Metrics are functions that assign numbers to

products, processes and resources

Software metrics are measurements which relate to

software systems, processes or related documents

Metrics compress system properties and traits into

numbers

Let’s see some examples..

Examples of size metrics

‣ NOM - Number of Methods

‣ NOA - Number of Attributes

‣ LOC - Number of Lines of Code

‣ NOS - Number of Statements

‣ NOC - Number of Children

Chidamber & Kemerer, 1994

Lorenz & Kidd, 1994

Cyclomatic Complexity (CYCLO)

‣ The McCabe cyclomatic complexity (CYCLO) counts the number of independent paths through the code of a function

‣ Good: it reveals the minimum number of tests to write

‣ Bad: its interpretation does not directly lead to improvement actions

McCabe, 1976

Weighted Method Count (WMC)

‣ WMC sums up the complexity of a class’ methods (measured by the metric of your choice, usually CYCLO)

‣ Good: It is configurable, thus adaptable to our precise needs

‣ Bad: Its interpretation does not directly lead to improvement actions

Chidamber & Kemerer, 1994

Coupling Between Objects (CBO)

‣ CBO shows the number of classes from which methods or attributes are used.

‣ Good: CBO takes into account real dependencies, not just declared ones

‣ Bad: No differentiation of types and/or intensity of coupling

Chidamber & Kemerer, 1994

McCall, 1977

Boehm, 1978

Metrics help to assess and improve quality!

Do they?

McCall, 1977

Boehm, 1978

?

Problems..

‣ Metrics granularity

‣ metrics capture symptoms,not causes of

problems

‣ in isolation, metrics do not lead to

improvement actions

‣ Implicit Mapping

‣ we do not reason in terms of metrics, but in

terms of design (principles)

2 big obstacles in using metrics:

Thresholds make metrics hard to interpret

Granularity makes metrics hard to use in isolation

How do I get an

initial understanding of a system?

Metric Value

LOC 35175

NOM 3618

NOC 384

CYCLO 5579

NOP 19

CALLS 15128

FANOUT 8590

AHH 0,12

ANDC 0,31

Metric Value

LOC 35175

NOM 3618

NOC 384

CYCLO 5579

NOP 19

CALLS 15128

FANOUT 8590

AHH 0,12

ANDC 0,31

We need means to compare

coupling?

hierarchies?

Characterizing Systems with

Metrics

The Overview Pyramid provides a metrics overview

Inheritance

Size Communication

Lanza & Marinescu, 2006

The Overview Pyramid provides a metrics overview

NOP 19

NOC 384

NOM 3618

LOC 35175

CYCLO 5579

Size

The Overview Pyramid provides a metrics overview

20,21 NOP 19

9,42 NOC 384

9,72 NOM 3618

0,15 LOC 35175

CYCLO 5579

Size

Make relative: CYCLO / LOC = 0,15, etc.

The Overview Pyramid provides a metrics overview

3618 NOM

15128 CALLS

8590 FANOUT

Communication

The Overview Pyramid provides a metrics overview

3618 NOM 4,18

15128 CALLS 0,56

8590 FANOUT

Communication

The Overview Pyramid provides a metrics overview

ANDC 0,31

AHH 0,12

Inheritance

The Overview Pyramid provides a metrics overview

ANDC 0,31

AHH 0,12

20,21 NOP 19

9,42 NOC 384

9,72 NOM 3618 3618 NOM 4,18

0,15 LOC 35175 15128 CALLS 0,56

CYCLO 5579 8590 FANOUT

Inheritance

Size Communication

Obtaining Thresholds

Java C++ php

LOW AVG HIGH LOW AVG HIGH LOW AVG HIGH

CYCLO/

LOC
0,16 0,2 0,24 0,2 0,25 0,3 0.16 0.20 0.24

LOC/N

OM
7 10 13 5 10 16 7 10 13

NOM/N

OC
4 7 10 4 9 15 4 7 10

...

The Overview Pyramid provides a metrics overview

ANDC 0,31

AHH 0,12

20,21 NOP 19

9,42 NOC 384

9,72 NOM 3618 3618 NOM 4,18

0,15 LOC 35175 15128 CALLS 0,56

CYCLO 5579 8590 FANOUT

Inheritance

Size Communication

The Overview Pyramid provides a metrics overview

ANDC 0,31

AHH 0,12

20,21 NOP 19

9,42 NOC 384

9,72 NOM 3618 3618 NOM 4,18

0,15 LOC 35175 15128 CALLS 0,56

CYCLO 5579 8590 FANOUT

Inheritance

Size Communication

close to highclose to averageclose to low

The Overview Pyramid provides a metrics overview

Inheritance

Size Communication

close to highclose to averageclose to low

How do I improve my code?

‣ Quality is more than zero bugs

‣ Quality is about design principles, design heuristics, and best practices

‣ Breaking them leads to

‣ Code deterioration

‣ Design problems ~ Maintenance problems

Imagine...

You change a small

design fragment...

...and one third of all

classes require changes!

Design Problems

‣ Expensive

‣ Frequent

‣ Unavoidable

‣ How can we detect and eliminate them?

Reference

M. Lanza, R. Marinescu

“Object-Oriented Metrics in Practice”

Springer, 2006

ISBN 3-540-24429-8

Identity Disharmony

How do I

define

myself?

God Class

Data Class

Brain Class

Feature Envy

Brain Method

Collaboration Disharmony

How do I

interact with

others?

Intensive Coupling

Dispersive Coupling

Shotgun Surgery

Classification Disharmony

How do I define myself

with respect to my

ancestors and

descendants?

Futile Hierarchy

Tradition Breaker

Refused Parent Bequest

God Class

“In a good object-oriented design

the intelligence of a system is uniformly distributed among the top-

level classes.”

Arthur Riel, 1996

God Classes

‣ God Classes tend to centralize the intelligence of the system, to do everything and to use data from small data-classes

‣ God Classes tend

‣ to centralize the intelligence of the system

‣ to do everything and

‣ to use data from small data-classes

‣ God Classes

‣ centralize the intelligence of the system

‣ do everything

‣ use data from small data-classes

God Classes

‣ God Classes

‣ centralize the intelligence of the system

‣ do everything

‣ use data from small data-classes

‣ God Classes

‣ are complex: high WMC

‣ are not cohesive: low TCC

‣ access external data: ATFD

Detection Strategies

‣ Detection strategies are metric-based queries to detect design flaws

Design Flaws do not come alone

Heavily accesses data

of other “lightweight”

classes, either

directly or using

accessor

methods.

Is large

Has a lot of

non-communicative

behavior

Characteristics of a God Class

God

Class

God Class Detection Strategy

And Now?

Follow A Clear and Repeatable Process

Metrics are only half the truth

Can we understand the beauty of a painting by measuring its frame and counting its colors?

Lecture 05

Software Visualization

Source Code = Text

Programming = Writing

/***/

/* micro-Max, */

/* A chess program smaller than 2KB (of non-blank source), by H.G. Muller */

/***/

/* version 3.2 (2000 characters) features: */

/* - recursive negamax search */

/* - quiescence search with recaptures */

/* - recapture extensions */

/* - (internal) iterative deepening */

/* - best-move-first 'sorting' */

/* - a hash table storing score and best move */

/* - full FIDE rules (expt minor ptomotion) and move-legality checking */

#define F(I,S,N) for(I=S;I<N;I++)

#define W(A) while(A)

#define K(A,B) *(int*)(T+A+(B&8)+S*(B&7))

#define J(A) K(y+A,b[y])-K(x+A,u)-K(H+A,t)

#define U 16777224

struct _ {int K,V;char X,Y,D;} A[U]; /* hash table, 16M+8 entries*/

int V=112,M=136,S=128,I=8e4,C=799,Q,N,i; /* V=0x70=rank mask, M=0x88 */

char O,K,L,

w[]={0,1,1,3,-1,3,5,9}, /* relative piece values */

o[]={-16,-15,-17,0,1,16,0,1,16,15,17,0,14,18,31,33,0, /* step-vector lists */

7,-1,11,6,8,3,6, /* 1st dir. in o[] per piece*/

6,3,5,7,4,5,3,6}, /* initial piece setup */

b[129], /* board: half of 16x8+dummy*/

T[1035], /* hash translation table */

n[]=".?+nkbrq?*?NKBRQ"; /* piece symbols on printout*/

D(k,q,l,e,J,Z,E,z,n) /* recursive minimax search, k=moving side, n=depth*/

int k,q,l,e,J,Z,E,z,n; /* (q,l)=window, e=current eval. score, E=e.p. sqr.*/

{ /* e=score, z=prev.dest; J,Z=hashkeys; return score*/

int j,r,m,v,d,h,i=9,F,G;

char t,p,u,x,y,X,Y,H,B;

struct _*a=A;

/* lookup pos. in hash table*/

j=(k*E^J)&U-9; /* try 8 consec. locations */

W((h=A[++j].K)&&h-Z&&--i); /* first empty or match */

a+=i?j:0; /* dummy A[0] if miss & full*/

if(a->K) /* hit: pos. is in hash tab */

{d=a->D;v=a->V;X=a->X; /* examine stored data */

if(d>=n) /* if depth sufficient: */

{if(v>=l|X&S&&v<=q|X&8)return v; /* use if window compatible */

d=n-1; /* or use as iter. start */

}X&=~M;Y=a->Y; /* with best-move hint */

Y=d?Y:0; /* don't try best at d=0 */

}else d=X=Y=0; /* start iter., no best yet */

N++; /* node count (for timing) */

W(d++<n|z==8&N<1e7&d<98) /* iterative deepening loop */

{x=B=X; /* start scan at prev. best */

Y|=8&Y>>4; /* request try noncastl. 1st*/

m=d>1?-I:e; /* unconsidered:static eval */

do{u=b[x]; /* scan board looking for */

if(u&k) /* own piece (inefficient!)*/

{r=p=u&7; /* p = piece type (set r>0) */

j=o[p+16]; /* first step vector f.piece*/

W(r=p>2&r<0?-r:-o[++j]) /* loop over directions o[] */

{A: /* resume normal after best */

y=x;F=G=S; /* (x,y)=move, (F,G)=castl.R*/

do{H=y+=r; /* y traverses ray */

if(Y&8)H=y=Y&~M; /* sneak in prev. best move */

if(i<0||E-S&&b[E]&&y-E<2&E-y<2)m=I; /* K capt. or bad castling */

if(m>=l)goto C; /* abort on fail high */

if(h=d-(y!=z)) /* remaining depth(-recapt.)*/

{v=p<6?b[x+8]-b[y+8]:0; /* center positional pts. */

b[G]=b[H]=b[x]=0;b[y]=u&31; /* do move, strip virgin-bit*/

if(!(G&M)){b[F]=k+6;v+=30;} /* castling: put R & score */

if(p<3) /* pawns: */

{v-=9*(((x-2)&M||b[x-2]!=u)+ /* structure, undefended */

((x+2)&M||b[x+2]!=u)-1); /* squares plus bias */

if(y+r+1&S){b[y]|=7;i+=C;} /* promote p to Q, add score*/

}

v=-D(24-k,-l-(l>e),m>q?-m:-q,-e-v-i, /* recursive eval. of reply */

J+J(0),Z+J(8)+G-S,F,y,h); /* J,Z: hash keys */

v-=v>e; /* delayed-gain penalty */

if(z==9) /* called as move-legality */

{if(v!=-I&x==K&y==L) /* checker: if move found */

{Q=-e-i;O=F;return l;} /* & not in check, signal */

v=m; /* (prevent fail-lows on */

} /* K-capt. replies) */

b[G]=k+38;b[F]=b[y]=0;b[x]=u;b[H]=t; /* undo move,G can be dummy */

if(Y&8){m=v;Y&=~8;goto A;} /* best=1st done,redo normal*/

if(v>m){m=v;X=x;Y=y|S&G;} /* update max, mark with S */

} /* if non castling */

t+=p<5; /* fake capt. for nonsliding*/

if(p<3&6*k+(y&V)==S /* pawn on 3rd/6th, or */

||(u&~24)==36&j==7&& /* virgin K moving sideways,*/

G&M&&b[G=(x|7)-(r>>1&7)]&32 /* 1st, virgin R in corner G*/

&&!(b[G^1]|b[G^2]) /* 2 empty sqrs. next to R */

){F=y;t--;} /* unfake capt., enable e.p.*/

}W(!t); /* if not capt. continue ray*/

}}}W((x=x+9&~M)-B); /* next sqr. of board, wrap */

C:if(m>I/4|m<-I/4)d=99; /* mate is indep. of depth */

m=m+I?m:-D(24-k,-I,I,0,J,Z,S,S,1)/2; /* best loses K: (stale)mate*/

if(!a->K|(a->X&M)!=M|a->D<=d) /* if new/better type/depth:*/

{a->K=Z;a->V=m;a->D=d;A->K=0; /* store in hash,dummy stays*/

a->X=X|8*(m>q)|S*(m<l);a->Y=Y; /* empty, type (limit/exact)*/

} /* encoded in X S,8 bits */

/*if(z==8)printf("%2d ply, %9d searched, %6d by (%2x,%2x)\n",d-1,N,m,X,Y&0x77);*/

}

if(z&8){K=X;L=Y&~M;}

return m;

}

main()

{

int j,k=8,*p,c[9];

F(i,0,8)

{b[i]=(b[i+V]=o[i+24]+40)+8;b[i+16]=18;b[i+96]=9; /* initial board setup*/

F(j,0,8)b[16*j+i+8]=(i-4)*(i-4)+(j-3.5)*(j-3.5); /* center-pts table */

} /*(in unused half b[])*/

F(i,M,1035)T[i]=random()>>9;

W(1) /* play loop */

{F(i,0,121)printf(" %c",i&8&&(i+=7)?10:n[b[i]&15]); /* print board */

p=c;W((*p++=getchar())>10); /* read input line */

N=0;

if(*c-10){K=c[0]-16*c[1]+C;L=c[2]-16*c[3]+C;}else /* parse entered move */

D(k,-I,I,Q,1,1,O,8,0); /* or think up one */

F(i,0,U)A[i].K=0; /* clear hash table */

Software... Visualization?

preemptive disclaimer

no silver bullet

visualization is

only a means,

not the end

Software Visualization

‣ Program Visualization: “The visualization of the actual program code or data structures in static or dynamic form”

‣ Algorithm Visualization: “The visualization of the higher-level abstractions which describe software”

Algorithm

Visualization

static algorithm

visualization

algorithm

animation

Program

Visualization

static

code

visualization

static

data

visualization

data

animation

code

animation

Software Visualization in Context

‣ There are many good-looking visualizations, but...

‣ When it comes to maintenance & evolution, there are several issues:

‣ Scalability

‣ Information Retrieval

‣ What to visualize

‣ How to visualize

‣ Limited time

‣ Limited resources

Program Visualization

‣ “The visualization of the actual program code or data structures in either static or dynamic form”

‣ Overall goal: generate views of a system to understand it

‣ Surprisingly complex problem domain/research area

‣ Visual Aspects: Efficient use of space, overplotting problems, layout issues, HCI

issues, GUI issues, lack of conventions (colors, shapes, etc.)

‣ Software Aspects

‣ Granularity (complete systems, subsystems, modules, classes, etc.)

‣ When to apply (first contact, known/unknown parts, forward engineering?)

‣ Methodology

Static Code Visualization

‣ The visualization of information that can be extracted from a system at “compile-time”

‣ Directly influenced by programming languages and their paradigms

‣ Object-Oriented: classes, methods, attributes, inheritance, ...

‣ Procedural: procedures, invocations, imports, ...

‣ Functional: functions, function calls, ...

Examples

Color Metric

width metric

height metric

The Polymetric View Principle

Position metrics (x, y)

Entities
Edge Width Metric

and Color Metric
Relationship

Class Hierarchy

System Complexity View

number of

lines of code

number of attributes

number of

methods

inheritance

number of

lines of code

number of attributes

number of

methods

inheritance

Method Structure Correlation View

cyclomatic

complexity

number of attributes

number of

attributes

x: lines of code,

y: number of statements

Increasing Information Granularity: The Class Blueprint

invocation and access direction

Detailing Class Blueprints

Regular

Overriding

Extending

Abstract

Constant

Delegating

Setter

Getter

Method

invocations

lines

Attribute

internal access

external

access

Access

Invocation

A Pattern Language based on Class Blueprints

Regular

Overriding

Extending

Abstract

Constant

Delegating

Setter

GetterMethod

invocations

lines
Attribute

internal access

external

access

class ModelFacade (ArgoUML)

What do you see here ?

classes ClassDiagramLayouter

and ClassDiagramNode (ArgoUML)

Reflections on Static Visualization

‣ Pros

‣ Intuitive

‣ Aesthetically pleasing

‣ Cons

‣ Several approaches are orthogonal to each other

‣ No conventions

‣ Too easy to produce meaningless results

‣ Scaling up is possible at the expense of semantics

‣ Orthogonally

‣ Without programming knowledge it’s only colored boxes and arrows..

Roel Wuyts
Creative Commons License 4 273

Roel Wuyts – Design of Software Systems

Creative Commons License 4

References

M. Lanza, R. Marinescu, Object-Oriented Metrics in Practice, Springer, 2006.

M. Lanza, Object-Oriented Reverse Engineering - Coarse-grained, Fine-grained, and
Evolutionary Software Visualization, Ph.D. Thesis, University of Berne, Switzerland,
2003.
http://www.inf.usi.ch/faculty/lanza/Downloads/Lanz03b.pdf

Overview of the Overview Pyramid:
http://pdepend.org/documentation/handbook/reports/overview-pyramid.html

http://www.inf.usi.ch/faculty/lanza/Downloads/Lanz03b.pdf
http://pdepend.org/documentation/handbook/reports/overview-pyramid.html

Design of Software Systems

(Ontwerp van SoftwareSystemen)

5 Software Development Processes

Roel Wuyts

2016-2017

Roel Wuyts
Creative Commons License 4 275

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Software Process

Set of activities that leads to the production of a software product

– lots of processes exist

– share some fundamental activities

Roel Wuyts
Creative Commons License 4 276

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Development Phases

Testing Validate the solution against the

requirements

Analysis Model and specify the requirements

(“what”)

Maintenance Repair defects and adapt the solution to

new requirements

Implementation Construct a solution in software

Requirements

Collection

Establish customer’s needs

Design Model and specify a solution (“how”)

Roel Wuyts
Creative Commons License 4 277

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Software Development Process

A software development methodology is

• a set of partially ordered steps

• to build, deploy, maintain, … software

Examples:

• Waterfall

• Spiral

• XP (eXtreme Programming)

• UP (Unified Process)

– RUP (Rational Unified Process)

– Agile UP

Roel Wuyts
Creative Commons License 4 278

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Lightweight vs. Heavyweight Processes

Document driven

Elaborate workflow definitions

Many different roles

Many checkpoints

High management overhead

Highly bureaucratic

Focus on

• indiv./interactions rather than process/tools

• working SW rather than documentation

• customer collaboration rather than contract

• responding to change rather than the plan

Heavyweight

e.g., Waterfall

model,

V-Process

Customizable

Framework

e.g., Rational

Unified

Process (RUP)

Agile (Lightweight)

e.g., eXtreme

Programming (XP),

SCRUM

Roel Wuyts
Creative Commons License 4 279

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Lightweight vs. Heavyweight Processes

Document driven

Elaborate workflow definitions

Many different roles

Many checkpoints

High management overhead

Highly bureaucratic

Focus on

• indiv./interactions rather than process/tools

• working SW rather than documentation

• customer collaboration rather than contract

• responding to change rather than the plan

Heavyweight

e.g., Waterfall

model,

V-Process

Customizable

Framework

e.g., Rational

Unified

Process (RUP)

Agile (Lightweight)

e.g., eXtreme

Programming (XP),

SCRUM

Roel Wuyts
Creative Commons License 4 280

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Waterfall Model

Characterized by

– Sequential steps (phases)

– Feedback loops (between two phases in development)

– Documentation-driven

Advantages

– Documentation

– Maintenance easier

Disadvantages

– Complete and frozen specification document up-front

often not feasible in practice

– Customer involvement in the first phase only

– Sequential and complete execution of phases often not desirable

– Process difficult to control

– The product becomes available very late in the process

Roel Wuyts
Creative Commons License 4 281

Roel Wuyts – Design of Software Systems

Creative Commons License 4

V-Model

Like the Waterfall model, it is a linear
model that is very rigid

– Requirements are expected not to
change

– Due to the V-shape, the first tests are
the implementation tests

Unlike the waterfall model, every
integration is tested

Roel Wuyts
Creative Commons License 4 282

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Lightweight vs. Heavyweight Processes

Document driven

Elaborate workflow definitions

Many different roles

Many checkpoints

High management overhead

Highly bureaucratic

Focus on

• indiv./interactions rather than process/tools

• working SW rather than documentation

• customer collaboration rather than contract

• responding to change rather than the plan

Heavyweight

e.g., Waterfall

model,

V-Process

Customizable

Framework

e.g.,

Unified

Process (UP)

Agile (Lightweight)

e.g., eXtreme

Programming (XP),

SCRUM

Roel Wuyts
Creative Commons License 4 283

Roel Wuyts – Design of Software Systems

Creative Commons License 4

UP: Iterative and Incremental development

iterative & incremental development : embracing change

– Essential for SW Development

(“No Silver Bullet”, Brooks, 1987)

iterative models: can be iterative w.r.t. value and/or requirements

Roel Wuyts
Creative Commons License 4 284

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Iterative Development (a.k.a. incremental models)

More functionality with each release (new increment)

– Operational quality portion of product within weeks

Non-incremental models (e.g. Waterfall)

– Operational quality complete product at end

DeploymentTestCodingDesign

DeploymentTestCodingDesign

DeploymentTestCodingDesign

R
e
q
u
ire

m
e
n
ts

Release 1

Release 2

Release 3

Roel Wuyts
Creative Commons License 4 285

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Incremental development (a.k.a. Evolutionary Models)

New versions implement new and evolving requirements

Version 1

Version 2

Version 3

Requirements Design Coding Test Deployment

Requirements Design Coding Test Deployment

Requirements Design Coding Test Deployment

feedback

Roel Wuyts
Creative Commons License 4 286

Roel Wuyts – Design of Software Systems

Creative Commons License 4

UP is Use-Case-Driven

Use cases are concise, simple, and understandable by a wide range of stakeholders

– End users, developers and acquirers understand functional requirements of the system

Use cases drive numerous activities in the process:

– Creation and validation of the design model

– Definition of test cases and procedures of the test model

– Planning of iterations

– Creation of user documentation

– System deployment

Use cases help synchronize the content of different models

Roel Wuyts
Creative Commons License 4 287

Roel Wuyts – Design of Software Systems

Creative Commons License 4

UP’s 4 Project Life Cycle Phases

Inception

– Approximate vision

– Business case

– Scope

– Vague estimates

– Continue or stop?

Elaboration

– Identification of most requirements

– Iterative implementation of the core architecture

– resolution of high risks

TransitionConstructionElaborationinception

time

Roel Wuyts
Creative Commons License 4 288

Roel Wuyts – Design of Software Systems

Creative Commons License 4

UP’s 4 Project Life Cycle Phases (ctd)

Construction

– Iterative implementation of lower risk elements

– Preparation for deployment

Transition

– Beta tests

– Deployment

TransitionConstructionElaborationinception

time

Roel Wuyts
Creative Commons License 4 289

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Iterations and Milestones

Each phase concludes with a well-defined milestone.

Preliminary
Iteration

Iter. #1 Iter. #2

Inception Elaboration Construction Transition

Milestone Release Final production

release

Roel Wuyts
Creative Commons License 4 290

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Iterations and Milestones

Phases consist of one or more iterations

– short fixed-length mini-projects (2 to 6 weeks)

– shift tasks to future iterations if necessary ...

– an iteration represents a complete development cycle

– the end of each iteration is a minor release, a stable, integrated executable subset of the final product

Preliminary
Iteration

Iter. #1 Iter. #2

Inception Elaboration Construction Transition

Milestone Release Final production

release

Roel Wuyts
Creative Commons License 4 291

Roel Wuyts – Design of Software Systems

Creative Commons License 4

The UP Disciplines

Project Management

Environment

Business Modeling

Implementation

Test

Analysis & Design

Preliminary
Iteration(s)

Iter.
#1

Phases

Process Disciplines

Iterations

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration & Change Mgmt

Requirements

Elaboration TransitionInceptio
n

Construction

Supporting Disciplines

Focus of this

course.

Roel Wuyts
Creative Commons License 4 292

Roel Wuyts – Design of Software Systems

Creative Commons License 4

UP

Advantages

– Incremental & Iterative

– Sits in between heavyweight and agile processes

• best of both worlds ?

– Customizable

Potential pitfalls

– Use Cases do not model all requirements

– Hard to make really lightweight, even when customized

• Quite some documentation and process remains

Roel Wuyts
Creative Commons License 4 293

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Lightweight vs. Heavyweight Processes

Document driven

Elaborate workflow definitions

Many different roles

Many checkpoints

High management overhead

Highly bureaucratic

Focus on

• indiv./interactions rather than process/tools

• working SW rather than documentation

• customer collaboration rather than contract

• responding to change rather than the plan

Heavyweight

e.g., Waterfall

model,

V-Process

Customizable

Framework

e.g., Rational

Unified

Process (RUP)

Agile (Lightweight)

e.g., eXtreme

Programming (XP),

SCRUM

Roel Wuyts
Creative Commons License 4 294

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Agile Development

Group of iterative and incremental software methodologies

Roel Wuyts
Creative Commons License 4 295

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Extreme Programming (XP)

Point of XP: coping with change and uncertainty

Based on number of practices:

– small, frequent releases of the system

– full-time engagement of customer

– pair programming, collective ownership of the code, sustainable development

– regular system releases, test-first development, continuous integration

– constant refactoring, simplest thing that can work

Roel Wuyts
Creative Commons License 4 296

Roel Wuyts – Design of Software Systems

Creative Commons License 4

The XP Release Cycle

Select user stories

for this release

Break down stories

to tasks
Plan release

Develop/integrate/tes

t software
Release softwareEvaluate system

Source: Sommerville: Software Engineering, 8th edition, 2007

Roel Wuyts
Creative Commons License 4 297

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Driving Metaphor

Driving a car is not about pointing the car in one direction and holding to it; driving is about making
lots of little course corrections.

“Do the simplest thing that could possibly work”

Roel Wuyts
Creative Commons License 4 298

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Customer-Developer Relationships

A well-known experience: The customer and the developer sit in a boat in the ocean and are afraid
of each other

Result: a lot of energy goes into protective measures and politics instead of success

Customer fears Developer fears

They won't get what they asked for They won't be given clear definitions of what needs

to be done

They must surrender the control of their careers

to techies who don't care

They will be given responsibility without authority

They'll pay too much for too little They will be told to do things that don't make sense

They won't know what is going on (the plans they

see will be fairy tales)

They'll have to sacrifice quality for deadlines

Roel Wuyts
Creative Commons License 4 299

Roel Wuyts – Design of Software Systems

Creative Commons License 4

The Customer Bill of Rights

You have the right to an overall plan To steer a project, you need to know what can be
accomplished within time and budget

You have the right to get the most possible value out of
every programming week The most valuable things are worked on first.

You have the right to see progress in a running system. Only a running system can give exact information about
project state

You have the right to change your mind, to substitute
functionality and to change priorities without exorbitant

costs.

Market and business requirements change. We have to
allow change.

You have the right to be informed about schedule
changes, in time to choose how to reduce the scope to

restore the original date.

XP works to be sure everyone knows just what is really
happening.

Roel Wuyts
Creative Commons License 4 300

Roel Wuyts – Design of Software Systems

Creative Commons License 4

The Developer Bill of Rights

You have the right to know what is needed, with clear
declarations of priority.

Tight communication with the customer. Customer
directs by value.

You have the right to produce quality work all the time. Unit Tests and Refactoring help to keep the code
clean

You have the right to ask for and receive help from peers,
managers, and customers No one can ever refuse help to a team member

You have the right to make and update your own estimates. Programmers know best how long it is going to take
them

You have the right to accept your responsibilities instead
having them assigned to you

We work most effectively when we have accepted
our responsibilities instead of having them thrust
upon us

Roel Wuyts
Creative Commons License 4 301

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Separation of Roles

Customer makes business decisions

Developers make technical decisions

The Customer owns “what you get” while the Developers own “what it costs”.

Business Decisions Technical Decisions

Scope Estimates

Dates of the releases Dates within an iteration

Priority Team velocity

Warnings about technical risks

Roel Wuyts
Creative Commons License 4 302

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Describing XP

Values Practices

Principles

Roel Wuyts
Creative Commons License 4 303

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Basic XP Values

Communication

– communicate problems&solutions, teamwork

Simplicity

– eliminate wasted complexity

Feedback

– change creates the need for feedback

Courage

– effective action in the face of fear

Respect

– care about you, the team, and the project

Roel Wuyts
Creative Commons License 4 304

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Principles

Humanity, Economics, Mutual Benefit, Self-Similarity, Improvement, Diversity, Reflection, Flow,
Opportunity, Redudancy, Failure, Quality, Baby Steps, Accepted Responsibility

Will not detail them -- they govern what the practices tend to accomplish

So, on to the practices!

Roel Wuyts
Creative Commons License 4 305

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Primary Practices

Sit Together

Whole Team

Informative Workspace

Energized Work

Pair Programming

Stories

Weekly Cycle

Quarterly Cycle

Slack

Ten Minute Build

Continuous Integration

Test-First Programming

Incremental Design

Roel Wuyts
Creative Commons License 4 306

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Stories

plan using units of customer-visible functionality

Save with compression

Currently the compression options are

in a dialog subsequent to the save

dialog. Make them part of the save

dialog itself

8 hrs

name

short description

estimate

index card

Roel Wuyts
Creative Commons License 4 307

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Another example

Roel Wuyts
Creative Commons License 4 308

Roel Wuyts – Design of Software Systems

Creative Commons License 4

7 more User Stories

Students can purchase monthly parking passes online.

Parking passes can be paid via credit cards.

Parking passes can be paid via PayPal ™.

Professors can input student marks.

Students can obtain their current seminar schedule.

Students can only enroll in seminars for which they have prerequisites.

Transcripts will be available online via a standard browser.

Roel Wuyts
Creative Commons License 4 309

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Sit Together

Develop in an open space big enough for the team

Roel Wuyts
Creative Commons License 4 310

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Informative Workspace

Workspace = about your work

– 15 seconds to convey how project is going

– shows important, active information

– drinks & snacks available, and clean

done this week this release

futureto be estimated

Roel Wuyts
Creative Commons License 4 311

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Pair Programming

Write all production programs with two people sitting at one machine

– make enough room, move keyboard and mouse

Pair programmers:

– keep each other on task

– brainstorm refinements to the system

– clarify ideas

– take initiative when partner is stuck (less frustration)

– hold each other accountable to practices

Roel Wuyts
Creative Commons License 4 312

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Pair programming and privacy

Sometimes you might need some privacy

– then go work alone

– come back with the idea (NOT the code)

• quickly reimplemented with two

• benefits the whole team, not you alone

Roel Wuyts
Creative Commons License 4 313

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Pair Programming

Rotate pairs frequently

– every couple of hours, at natural breaks in development

– with a timer, every 60 minutes (or 30 minutes for difficult problems)

Roel Wuyts
Creative Commons License 4 314

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Pair Programming and Personal Space

Not everybody likes to sit close!

Observe personal hygiene and health

Sexual feelings are not in best interest of the team

– even when mutual

When uncomfortable pairing with somebody, talk about it with someone safe

– chances are that you are not the only one

– everybody needs to feel comfortable

Roel Wuyts
Creative Commons License 4 315

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Weekly Cycle

Plan work one week at a time.

Do this on a meeting at the begin of each week

– Review progress.

– Let customers pick a week’s worth of stories to implement this week.

– Break the stories into tasks. Team members sign up for tasks and estimate them.

Start writing tests that will run when the stories are completed

Roel Wuyts
Creative Commons License 4 316

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Ten-Minute Build

Automatically build the whole system and run all of the tests in ten minutes

– longer: will not be used (and errors result)

– shorter: not enough time to drink coffee

Note: if it takes longer than 10 minutes:

– maybe only rebuild changed part or test changes

– But: introduces errors. Only do this when necessary

Lowers stress: “Did we make a mistake? Let’s see.”

Roel Wuyts
Creative Commons License 4 317

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Continuous Integration

Team Programming = Divide, Conquer, Integrate

Integrate and test changes after no more than a couple of hours

– integration typically takes long

– when done at the end, risks the whole project when integration problems are discovered

– the longer you wait, the more it costs and the more unpredictable it becomes

Roel Wuyts
Creative Commons License 4 318

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Using Continuous Integration

Synchronous

– After a task is finished, you integrate and run the tests

– Immediate feedback for you and your partner

Asynchronous

– After submitting changes, the build system notices something new, builds and tests the system, and
gives feedback by mail, notification, etc.

– Feedback typically comes when a new task is started

– Pair programmers might have been switched already

Roel Wuyts
Creative Commons License 4 319

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Test-first Programming

Write a failing automated test before changing code

Addresses many problems:

– Scope creep: focus coding by what the code should do, not on the “just in case” code

– Coupling and cohesion: If it’s hard to write a test, there is a design problem (not a testing problem)

– Trust: clean working code + automated tests

– Rhythm: gives focus on what to do next

• efficient rhythm: test, code, refactor, test, ...

Roel Wuyts
Creative Commons License 4 320

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Incremental Design

Invest in the design of the system every day. Strive to the design of the system an excellent fit for
the needs of the system that day

– Completely opposite to lots of other practices

• Waterfall and similar approaches

Can work with XP because of the other practices

– Automated tests, continuous integration, ...

Note: you need to invest in design!

– not just implement story after story after story...

Roel Wuyts
Creative Commons License 4 321

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Corollary Practices

Real Customer Involvement

Incremental Deployment

Team Continuity

Shrinking teams

Root-Cause Analysis

Shared Code

Code and Tests

Single Code Base

Daily Deployment

Negotiated Scope Contract

Pay-Per-Use

Roel Wuyts
Creative Commons License 4 322

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Stages in XP Project

Initiation

– User Stories

Release Planning

Release (each Release is typically 1 -6 months)

– Iteration 1 (typically 1 -3 weeks)

– Iteration 2

– :

– Iteration n

Roel Wuyts
Creative Commons License 4 323

Roel Wuyts – Design of Software Systems

Creative Commons License 4

XP

Advantages

– works well for small teams

– low process overhead, lean & mean

Potential pitfalls

– no documented compromises of user conflicts

– lack of an overall design specification or document

– can be hard to fit in organizations/workflows

Roel Wuyts
Creative Commons License 4 324

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Conclusion

A software development methodology is

• a set of partially ordered steps

• to build, deploy, maintain, … software

Many methodologies exist

– each with trade-offs

– pick the one according to your needs

• project size

• project partners

• development team(s)

• outside constraints (legislation, domain constraints, ...)

Roel Wuyts
Creative Commons License 4 325

Roel Wuyts – Design of Software Systems

Creative Commons License 4

References

Craig Larman, Applying UML and Patterns – An Introduction to Object-Oriented Analysis and Design
and Iterative Development (3rd ed.), Prentice Hall, 2005.

Kent Beck, Extreme Programming Explained: Embrace Change (2nd ed.), 2004.

http://c2.com/cgi/wiki?ExtremeProgramming

http://c2.com/cgi/wiki?ExtremeProgramming

Design of Software Systems

(Ontwerp van SoftwareSystemen)

5 Unit Testing, Refactoring and Profiling

Roel Wuyts

2016-2017

Roel Wuyts
Creative Commons License 4 327

Roel Wuyts – Design of Software Systems

Creative Commons License 4

A golden rule...

Make it Work

Make it Right

Make it Fast

Roel Wuyts
Creative Commons License 4 328

Roel Wuyts – Design of Software Systems

Creative Commons License 4

How does this work?

First make sure the software does what you want

– use unit tests

Then rework the code until it speaks for itself

– use refactorings

Then optimize the performance, if needed

– use profiling

Roel Wuyts
Creative Commons License 4 329

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Testing

Unit Testing test individual components

Module Testing test a collection of related components

Sub-System Testing test sub-system interface mismatches

System Testing
• test interactions between sub-systems
• tests that the complete system fulfils requirements

Acceptance Testing test system with real rather than simulated data

Roel Wuyts
Creative Commons License 4 330

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Unit Testing

How can I trust that changes did not destroy something?

What is my confidence in the system ?

How do I write tests?

What is unit testing?

Roel Wuyts
Creative Commons License 4 331

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Tests

Tests represent your trust in the system

Build them incrementally

– Do not need to focus on everything

– When a new bug shows up: write a test

Even better: test first!

– Act as your first client

– Helps finding proper interfaces

Tests are active documentation: they are always in sync

Roel Wuyts
Creative Commons License 4 332

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Testing Style

“The style here is to write a few lines of code, then a test that should run, or even better, to write a
test that won't run, then write the code that will make it run.”

– write unit tests that thoroughly test a single class

– write tests as you develop (even before you implement)

– write tests for every new piece of functionality

“Developers should spend 25-50% of their time developing tests.”

Roel Wuyts
Creative Commons License 4 333

Roel Wuyts – Design of Software Systems

Creative Commons License 4

But I can’t cover anything!

Sure! Nobody can but:

– When someone discovers a defect in your code, first write a test that demonstrates the defect.

– Then debug until the test succeeds.

“Whenever you are tempted to type something into
a print statement or a debugger expression, write it
as a test instead.”

Martin Fowler

Roel Wuyts
Creative Commons License 4 334

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Unit Testing

Ensure that you get the specified behaviour of the public interface of a class

– Normally tests a single class

General setup of a test:

– Create a context,

– Send a stimulus,

– Check the results

Roel Wuyts
Creative Commons License 4 335

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example

public class SaleTest extends TestCase

{

// …

public void testMakeLineItem() {

Sale fixture = new Sale();

Money total = new Money(7.5);

Money price = new Money(2.5);

ItemID id = new ItemID(1);

ProductDescription desc = new ProductDescription(id, price, “product 1”);

sale.makeLineItem(desc, 1);

sale.makeLineItem(desc, 2);

assertTrue(sale.getTotal().equals(total));

}

Roel Wuyts
Creative Commons License 4 336

Roel Wuyts – Design of Software Systems

Creative Commons License 4

About Failures and Errors

A failure is a failed assertion

– i.e., an anticipated problem that you test.

• assertEquals(2, myContainer.nrOfElements())

An error is a condition you didn’t check for.

– e.g. an exception being thrown you did expect

boolean isExceptionThrown = false;

try {

myContainer.get(3);

} catch(IndexOutOfBoundsException e) {

isExceptionThrown = true;

}

assertTrue(isExceptionThrown);

Roel Wuyts
Creative Commons License 4 337

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Good Unit Tests

Are repeatable

– have to be deterministic to be useful

Require no human intervention

– so that they can be automated

Are “self-described” and tell a story

– to serve as documentation

Change less often than the system

– they encode stable functionality

Roel Wuyts
Creative Commons License 4 338

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Designing tests

Build simple tests

Check that failures are caught

Run tests frequently (every couple of minutes)

Test Infrastructure code first, then application-specific code

Reuse as much test code as you can (tests are code!)

Write small tests that test one particular aspect

Make sure the tests are deterministic

Roel Wuyts
Creative Commons License 4 339

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why spending time testing?

Find problems soon.

– in context of what you were doing!

Serve as documentation.

Ease maintenance and evolution.

– new developers jump in anytime..

Have something to show all the time.

Roel Wuyts
Creative Commons License 4 340

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Testing Frameworks

Tests have to be repeatable

Unit Testing Frameworks implement necessary infrastructure so that you can set up your tests, run
them frequently, and see the results

SUnit is “the mother of all unit test frameworks”

– started in Smalltalk

– fanned out to all kinds of other languages

• JUnit, NUnit, CppUnit, ...

Roel Wuyts
Creative Commons License 4 341

Roel Wuyts – Design of Software Systems

Creative Commons License 4

JUnit overview

Junit (inspired by Sunit) is a simple “testing framework” that provides:

– classes for writing Test Cases and Test Suites

– methods for setting up and cleaning up test data (“fixtures”)

– methods for making assertions

– textual and graphical tools for running tests

Roel Wuyts
Creative Commons License 4 342

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Testing Frameworks

Key parts

– TestCase: bundles test methods

– Some mechanism to execute test code

– (methods, macroes, ...)

– Fixture (≈ Resource): known set of objects that serves as a base for a set of test cases

– TestSuite: bundles testcases so that they can be run together

– TestRunner: runs a testsuite, outputting results

Roel Wuyts
Creative Commons License 4 343

Roel Wuyts – Design of Software Systems

Creative Commons License 4

A testing scenario

The framework calls the test methods that you define for your test cases

– You need to declare a TestRunner

– You specify who will gather the results

– You add the needed tests to the runner

– You run the TestRunner

• this automatically runs all tests, collecting the results

– You pass the results to an Outputter

Roel Wuyts
Creative Commons License 4 345

Roel Wuyts – Design of Software Systems

Creative Commons License 4

A testing scenario

The framework calls the test methods that you define for your test cases

Roel Wuyts
Creative Commons License 4 346

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Setup and TearDown

Executed before and after each test

– setUp allows us to specify and reuse the context

– tearDown makes us clean-up afterwards

Roel Wuyts
Creative Commons License 4 347

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example unit test for an online ordering system

Roel Wuyts
Creative Commons License 4 348

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Mocking & Stubbing

Example unit test for an online ordering system

public class OrderStateTester extends TestCase {

private static String TALISKER = "Talisker";

private static String HIGHLAND_PARK = "Highland Park";

private Warehouse warehouse = new WarehouseImpl();

protected void setUp() throws Exception {

warehouse.add(TALISKER, 50);

warehouse.add(HIGHLAND_PARK, 25);

}

public void testOrderIsFilledIfEnoughInWarehouse() {

Order order = new Order(TALISKER, 50);

order.fill(warehouse);

assertTrue(order.isFilled());

assertEquals(0, warehouse.getInventory(TALISKER));

}

public void testOrderDoesNotRemoveIfNotEnough() {

Order order = new Order(TALISKER, 51);

order.fill(warehouse);

assertFalse(order.isFilled());

assertEquals(50, warehouse.getInventory(TALISKER));

}

Roel Wuyts
Creative Commons License 4 349

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Mocking & Stubbing

Example unit test for an online ordering system

public class OrderStateTester extends TestCase {

private static String TALISKER = "Talisker";

private static String HIGHLAND_PARK = "Highland Park";

private Warehouse warehouse = new WarehouseImpl();

protected void setUp() throws Exception {

warehouse.add(TALISKER, 50);

warehouse.add(HIGHLAND_PARK, 25);

}

public void testOrderIsFilledIfEnoughInWarehouse() {

Order order = new Order(TALISKER, 50);

order.fill(warehouse);

assertTrue(order.isFilled());

assertEquals(0, warehouse.getInventory(TALISKER));

}

public void testOrderDoesNotRemoveIfNotEnough() {

Order order = new Order(TALISKER, 51);

order.fill(warehouse);

assertFalse(order.isFilled());

assertEquals(50, warehouse.getInventory(TALISKER));

}

tested object
“system under test” (SUT)

state verification

Collaborator (wharehouse)

Roel Wuyts
Creative Commons License 4 350

Roel Wuyts – Design of Software Systems

Creative Commons License 4

public class OrderInteractionTester extends MockObjectTestCase {

private static String TALISKER = "Talisker";

public void testFillingRemovesInventoryIfInStock() {

Order order = new Order(TALISKER, 50);

Mock warehouseMock = new Mock(Warehouse.class);

warehouseMock.expects(once()).method("hasInventory")

.with(eq(TALISKER),eq(50))

.will(returnValue(true));

warehouseMock.expects(once()).method("remove")

.with(eq(TALISKER), eq(50))

.after("hasInventory");

order.fill((Warehouse) warehouseMock.proxy());

warehouseMock.verify();

assertTrue(order.isFilled());

}

}

Mocking & Stubbing

Using mocking (jMock library example)

setup - expectations

setup - data

exercise

verify

More info: http://martinfowler.com/articles/mocksArentStubs.html

http://martinfowler.com/articles/mocksArentStubs.html

Roel Wuyts
Creative Commons License 4 351

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactorings

Refactoring

– What is it?

– Why is it necessary?

– Examples

– Tool support

– Obstacles to refactoring

Roel Wuyts
Creative Commons License 4 352

Roel Wuyts – Design of Software Systems

Creative Commons License 4

What is Refactoring?

The process of changing a software system in such a way that it does not alter the external
behaviour of the code, yet improves its internal structure [Fowl99a]

A behaviour-preserving source-to-source program transformation [Robe98a]

A change to the system that leaves its behaviour unchanged, but enhances some non-functional
quality - simplicity, flexibility, understandability, ... [Beck99a]

Roel Wuyts
Creative Commons License 4 353

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Typical Refactorings

Class

Refactorings
Method Refactorings Attribute Refactorings

add (sub)class to

hierarchy
add method to class add variable to class

rename class rename method rename variable

remove class remove method remove variable

push method down push variable down

push method up pull variable up

add parameter to method create accessors

move method to component abstract variable

extract code in new method

Roel Wuyts
Creative Commons License 4 354

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why Refactoring?

“Grow, don’t build software” (Fred Brooks)

“Any fool can write code that a computer can understand. Good programmers write code that
humans can understand.” (Fowler)

Some argue that good design does not lead to code needing refactoring ...

Roel Wuyts
Creative Commons License 4 355

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why Refactoring?

In reality

– Extremely difficult to get the design right the first time

– You cannot fully understand the problem domain

– You cannot fully understand user requirements

– You cannot really plan how the system will evolve

– Original design is often inadequate

– System becomes brittle, difficult to change

Roel Wuyts
Creative Commons License 4 356

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why Refactoring?

Refactoring helps you to

– Manipulate code in a safe environment

• Behaviour preserving

– Recreate a situation where evolution is possible

– Understand existing code

Remember: software needs to be maintained

– This is one way to do it safely

Roel Wuyts
Creative Commons License 4 357

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Examples of Refactoring Analysis

Rename Method

– existence of similar methods

– references of method definitions

– references of calls

AddClass

– simple

– namespace use and static references between class structure

Roel Wuyts
Creative Commons License 4 358

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Rename Method

Roel Wuyts
Creative Commons License 4 359

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Rename Method: Do It Yourself

Check if a method does not exist in the class and superclass/subclasses with the same “name”

Browse all the implementers (method definitions)

Browse all the senders (method invocations)

Edit and rename all implementers

Edit and rename all senders

Remove all implementers

Test

Roel Wuyts
Creative Commons License 4 360

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Rename Method

Rename Method (method, new name)

Preconditions

– no method exists with the signature implied by new name in the inheritance hierarchy that contains
method

– [Smalltalk] no methods with same signature as method outside the inheritance hierarchy of method

– [Java] method is not a constructor

PostConditions

– method has new name

– relevant methods in the inheritance hierarchy have new name

– invocations of changed method are updated to new name

Other Considerations

– Typed/Dynamically Typed Languages => Scope of the renaming

Roel Wuyts
Creative Commons License 4 361

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Add class

Roel Wuyts
Creative Commons License 4 362

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Add Class

Preconditions

– no class and global variable exists with classname in the same scope

– subclasses are all subclasses of all superclasses

– [Smalltalk] superclasses must contain one class

– [Smalltalk] superclasses and subclasses cannot be metaclasses

Postconditions

– new class is added into the hierarchy with superclasses as superclasses and subclasses as
subclasses

– new class has name classname

– subclasses inherit from new class and not anymore from superclasses

Considerations: Abstractness

Roel Wuyts
Creative Commons License 4 363

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Tool Support

Could do refactoring by hand

– see Rename Method example

But much better if automated

– easier

– safer

Which tools are needed to support refactoring?

Roel Wuyts
Creative Commons License 4 364

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Tool support for refactoring activities

Change Efficiently Failure Proof

Refactoring Tools

- source-to-source program transformation

- behaviour preserving

⇒ Improve Structure

Regression Testing

- Repeating past tests

- requires no user interaction

- is deterministic

⇒ Verify damage to previous work

Development Environment

- Fast edit-compile-run

- Integrated in environment

⇒ Convenient

Configuration&Version Management

- track different versions

- track who did what

⇒ can revert to earlier versions

Roel Wuyts
Creative Commons License 4 365

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring in Eclipse

Roel Wuyts
Creative Commons License 4 366

Roel Wuyts – Design of Software Systems

Creative Commons License 4

When to Refacctor ?

When you add functionality

– Helps you to understand the code you are modifying.

– Sometimes the existing design does not allow you to easily add the feature.

When you need to fix a bug

– If you get a bug report, it’s a sign the code needs refactoring

– because the code was not clear enough for you to see the bug in the first place

When you do a code review

– Code reviews help spread knowledge through the development team.

– Works best with small review groups

Roel Wuyts
Creative Commons License 4 367

Roel Wuyts – Design of Software Systems

Creative Commons License 4

When to Refactor

You should refactor:

– Any time that you see a better way of doing things

• “Better” means making the code easier to understand and to modify in the future

– You can do so without breaking the code

• Unit tests are essential for this (remember: do not refactor in isolation)

You should NOT refactor:

– Stable code (code that won’t ever need to change, code library)

– Someone else’s code

• Unless you’ve inherited it (and now it’s yours)

Rule of Thumb: ‘Three strikes and you refactor’

– 1st time: Write from scratch

– 2nd time: Duplication eventually admissible

– 3rd time: Refactor !!!

≉ XP practice!

Roel Wuyts
Creative Commons License 4 368

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: Switch Statements

Switch statements are very rare in properly designed object-oriented code

– Therefore, a switch statement is a simple and easily detected “bad smell”

– Of course, not all uses of switch are bad

– A switch statement should NOT be used to distinguish between various kinds of object

There are several well-defined refactorings for this case

– The simplest is the creation of subclasses

Roel Wuyts
Creative Commons License 4 369

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: Bad Smell

class Animal {

final int MAMMAL = 0, BIRD = 1, REPTILE = 2;

int myKind; // set in constructor

...

String getSkin() {

switch (myKind) {

case MAMMAL: return "hair";

case BIRD: return "feathers";

case REPTILE: return "scales";

default: return "integument";

}

}

}

Roel Wuyts
Creative Commons License 4 370

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: Improved

class Animal {

String getSkin() {

return "integument";

}

}

class Mammal extends Animal {

String getSkin() {

return "hair"; }

}

class Bird extends Animal {

String getSkin() {

return "feathers";

}

}

class Reptile extends Animal {

String getSkin() {

return "scales";

}

}

Roel Wuyts
Creative Commons License 4 371

Roel Wuyts – Design of Software Systems

Creative Commons License 4

JUnit Tests

As we refactor, we need to run (JUnit) tests to ensure that we haven’t introduced errors

This should work equally well with either implementation

The setUp() method of the test fixture may need to be modified

Re-running unit tests proves that the refactoring succeeded
(= external behavior remained unchanged)

public void testGetSkin() {

assertEquals("hair", myMammal.getSkin());

assertEquals("feathers", myBird.getSkin());

assertEquals("scales", myReptile.getSkin());

assertEquals("integument", myAnimal.getSkin());

}

Roel Wuyts
Creative Commons License 4 372

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Examples

72 Refactorings identified by Fowler

Add Parameter

Change Association

Change Reference to Value

Change Value to Reference

Collapse Hierarchy

Consolidate Conditional

Convert Procedures to Objects

Decompose Conditional

Encapsulate Collection

Encapsulate Downcast

Encapsulate Field

Extract Class

Extract Interface

Extract Method

Extract Subclass

Extract Superclass

Form Template Method

Hide Delegate

Hide Method

Inline Class

Inline Temp

Introduce Assertion

Introduce Explain Variable

Introduce Foreign Method

…

Roel Wuyts
Creative Commons License 4 373

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Collapse Hierarchy

When superclass and subclass are not very different: Merge them

Roel Wuyts
Creative Commons License 4 374

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Consolidate Conditional

When the same fragment of code is in all branches: Move it out

double disabilityAmount()

{

if (_seniority < 2) return 0;

if (_monthsDisabled > 12)

return 0;

if (_isPartTime) return 0;

// compute the disability amount

}

double disabilityAmount()

{

if (isNotEligableForDisability())

return 0;
// compute the disability amount

}

Roel Wuyts
Creative Commons License 4 375

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Decompose Conditional

When having a complicated conditional statement: Extract if/then/else parts

if (date.before (SUMMER_START) || date.after(SUMMER_END))

charge = quantity * _winterRate + _winterServiceCharge;

else

charge = quantity * _summerRate;

if (notSummer(date))

charge = winterCharge (quantity);

else charge = summerCharge (quantity);

Roel Wuyts
Creative Commons License 4 376

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Encapsulate Collection

When a method returns a collection: Provide Read-only view & add/remove methods

Roel Wuyts
Creative Commons License 4 377

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Extract Class

When we have 1 class doing the work that should be done by 2:
Create new class, move fields & methods

=> GRASP High Cohesion

Roel Wuyts
Creative Commons License 4 378

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Inline Class

When a class isn't doing very much: Merge with other class

Roel Wuyts
Creative Commons License 4 379

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Encapsulate Downcast

When a method returns an object that needs to be downcasted by its callers:

– Move the downcast to within the method.

– happens often when a class uses a collection or iterator

Object lastReading() {

return readings.lastElement();

}

Reading lastReading =
(Reading) theSite.lastReading();

Reading lastReading() {

return (Reading) readings.lastElement();

}

Reading lastReading = theSite.lastReading();

Roel Wuyts
Creative Commons License 4 380

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example 9: Extract Method

When we have a code fragment that can be grouped together: turn the fragment into a method
with an explanative name

void printOwing()

{

printBanner();

// print details

System.out.println ("name: " + _name);

System.out.println ("amount“ +

getOutstanding());

}

void printOwing() {

printBanner();

printDetails(getOutstanding());
}

Roel Wuyts
Creative Commons License 4 381

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Bad Smells in Code

Duplicated Code

Long Method

Large Class

Long Parameter List

Divergent Change

Shotgun Surgery

Feature Envy

Data Clumps

Primitive Obsession

Switch Statements

Comments

Parallel Inheritance/Interface Hierarchies

Lazy Class

Speculative Generality

Temporary Field

Message Chains

Middle Man

Inappropriate Intimacy

Incomplete Library Class

Data Class

Refused Bequest

Alternative Classes with Different Interfaces

Roel Wuyts
Creative Commons License 4 382

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Bad Smells

Where did this term come from?

“If it stinks, change it.”
--Grandma Beck

The basic idea is that there are things in code that cause problems

– Duplicated code, Long methods, …

But any time you change working code, you run the risk of breaking it

– A good test suite makes refactoring much easier and safer

Bad smells gives inspiration, but are not designed as metrics

– You have to decide yourself when something is “too much”, …

Roel Wuyts
Creative Commons License 4 383

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: Duplicated Code

If you see the same code structure in more than one place, find a way to unify them

“Number one in the stink parade” !!!

The usual solution is to perform

– ExtractMethod: create a single method from the duplicated code

– Invoke from all places: Use it wherever needed

– You sometimes need additional refactorings (Add Parameter, …)

This adds the overhead of method calls, thus the code could get a bit slower

Roel Wuyts
Creative Commons License 4 384

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Other Bad Smells

Long Method

– The longer a procedure is, the more difficult it is to understand.

– Solution: perform EXTRACT METHOD or Decompose Conditional or Replace Temp with
Query.

Large class

– When a class is trying to do too much, it often shows up as too many instance variables.

– Solution: perform EXTRACT CLASS or EXTRACT SUBCLASS

Feature Envy

– A method that seems more interested in a class other than the one it is in.

– Solution: perform MOVE METHOD or EXTRACT METHOD on the jealous bit and get it home.

Roel Wuyts
Creative Commons License 4 385

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Other Bad Smells

Shotgun Surgery

– This situation occurs when every time you make a kind of change, you have to make a lot of
little changes to a lot of different classes.

– Solution: perform MOVE METHOD/FIELD or INLINE CLASS bring a whole bunch of behavior
together.

Long Parameter List

– In OO, you don't need to pass in everything the method needs.
Instead, you pass enough so the method can get to everything it needs

– Solution: Use REPLACE PARAMETER WITH METHOD when you can get the data in one
parameter by making a request of an object you already know about.

Roel Wuyts
Creative Commons License 4 386

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Bad Smell/Sweet Smell: Comments

Fowler says “comments often are used as a deodorant”

– If you need a comment to explain what a block of code does, use Extract Method

– If you need a comment to explain what a method does, use Rename Method

– If you need to describe the required state of the system, use Introduce Assertion

When you feel the need to write a comment, first try to refactor the code so that any comment
becomes superfluous

The point is that code should be self-explanatory, so that comments are not necessary.

A comment is a good place to say why you did something

Roel Wuyts
Creative Commons License 4 387

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Java FindBugs

Roel Wuyts
Creative Commons License 4 388

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Obstacles to Refactoring

Performance issue

– “Refactoring will slow down the execution”

Cultural Issues

– “We pay you to add new features, not to improve the code!”

If it doesn’t break, do not fix it

– “We do not have a problem, this is our software!“

Development is always under time pressure

– Refactoring takes time

– Refactoring better after delivery

– Process should take it into account, like testing

Roel Wuyts
Creative Commons License 4 389

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Conclusion

Refactoring is just a way of rearranging code

– Refactorings are used to solve problems

– If there’s no problem, you shouldn’t refactor

The notion of “bad smells” is a way of helping us recognize when we have a problem

– Familiarity with bad smells helps us avoid them in the first place

Refactorings are mostly pretty obvious

– Most of the value in discussing them is just to bring them into our “conscious toolbox”

– Refactorings have names in order to crystalize the idea and help us remember it

Roel Wuyts
Creative Commons License 4 390

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Profiling

What and how

Roel Wuyts
Creative Commons License 4 391

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Performance Myth

Don’t think that clean software is slow!

Normally only 10% of your system consumes 90% of the resources so just focus on 10 %.

– Refactorings help to localise the part that need change

– Refactorings help to concentrate the optimisations

Always use a profiler on your “slow” system to guide your optimisation effort

– Never optimise first!

Roel Wuyts
Creative Commons License 4 392

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Profiling

“Measure the behaviour of a program as it runs”

Note: can profile different things

– execution speed

– memory usage

– ...

Roel Wuyts
Creative Commons License 4 393

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Profiling concepts

How does it work?

– Sampling: gather information from time to time

• Less accurate

• Less performance overhead

– Code instrumentation: modify program to analyze itself

• Full instrumentation is very exact

• Slower

• Risc for Heisenbugs

• Can be manual, static, dynamic, ...

Roel Wuyts
Creative Commons License 4 394

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Profiler Tools

Can be integrated in Development Environment

– linked with code: can highlight slow methods, …

– make profile data understandable and usable

Can be stand-alone

– no need to get project in IDE just to profile

Roel Wuyts
Creative Commons License 4 395

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: Java Profiling in Eclipse

Java profiling can be installed in Eclipse

– Does Memory and Execution Time profiling

• local or remote

Roel Wuyts
Creative Commons License 4 396

Roel Wuyts – Design of Software Systems

Creative Commons License 4

We have a Java project to profile...

Roel Wuyts
Creative Commons License 4 397

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Profile the main function

Roel Wuyts
Creative Commons License 4 398

Roel Wuyts – Design of Software Systems

Creative Commons License 4

View results in Profiling perspective

Roel Wuyts
Creative Commons License 4 399

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: VisualVM (http://visualvm.java.net/)

monitor and/or sample CPU time and memory

Easy to use, stand-alone

See video

Roel Wuyts
Creative Commons License 4 400

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Other useful tools exist for profiling...

“Scalasca” : spot communication&synchronization imbalances in MPI programs
(http://scalasca.org)

Roel Wuyts
Creative Commons License 4 401

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Other useful tools exist for profiling...

“Sniper” : fast hardware simulator for detailed analysis (http://snipersim.org)

Roel Wuyts
Creative Commons License 4 402

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Sometimes you have to roll your own

See video on course site

profile load balancing efficacy per core over time

Roel Wuyts
Creative Commons License 4 403

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Conclusion

Make it Work, Make it Right, Make it Fast

Unit testing remove fear of making changes

Refactoring remove fear of making changes

Profiling tells you where to make performance-related changes

– focus your effort

Design of Software Systems

(Ontwerp van SoftwareSystemen)

7 On Multi-user Development Tools,Versioning and Packaging of
code, their Relations, the Universe and Everything.

Roel Wuyts

2016-2017

Roel Wuyts
Creative Commons License 4 405

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Developing Complex Systems

How do scientific disciplines construct complex systems ?

Roel Wuyts
Creative Commons License 4 406

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Architectural Software

Roel Wuyts
Creative Commons License 4 407

Roel Wuyts – Design of Software Systems

Creative Commons License 4

RF/mW Design & Analog/RFIC Verification

Roel Wuyts
Creative Commons License 4 408

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Visualization & Manipulation of molecules

Roel Wuyts
Creative Commons License 4 409

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Computer Science/Engineering…

Roel Wuyts
Creative Commons License 4 410

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Corollary

We need to construct systems that are typically more complex than in other disciplines

– for several reasons

We have tangible elements to manipulate

– Buildings, circuits and molecules need a representation that is different than their physical one

Yet lots of developers still seem to prefer basic tools

– yes, emacs is a basic tool...

Roel Wuyts
Creative Commons License 4 411

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Eclipse/Netbeans/IntelliJ/… ?

Roel Wuyts
Creative Commons License 4 412

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Eclipse...

Eclipse is a decent integrated development environment

– integrates navigation, editing, unit tests, refactoring, ...

– was developed by a lot of former Smalltalk people :-)

But at its core it is file-based (and so are most others)

– So ? Why don’t I like this ?

Roel Wuyts
Creative Commons License 4 413

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Files versus Objects

Non computer science disciplines:

– Architects work with construction materials&buildings

• So do their tools

– Molecular biologists work with modules

• Environment manipulates molecules

– ...

We work with objects

– Most tools deal with files ?!

Roel Wuyts
Creative Commons License 4 414

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Smalltalk image approach

The Smalltalk image is a live environment

– consists entirely of objects

– objects are manipulated

Files are one way of storing objects

– code too, since code are objects

– Databases are another mechanism, or network sockets or ...

Roel Wuyts
Creative Commons License 4 415

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Sidenote on Environments

Good developers tailor their environment

– So they need to be easily extensible

• emacs: easy

• Smalltalk environments: easy

• Eclipse: possible

• Most environments: hard or not possible

Always favour an extensible one

– control your tools!

Roel Wuyts
Creative Commons License 4 416

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Multi-user Development

Software engineering is a teamsport ;-)

Needed

– a code repository that allows multiple users

– integrated versioning

– configuration management

The language also has packaging mechanisms

– with or without namespaces

These concepts cross-cut

Roel Wuyts
Creative Commons License 4 417

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Code repositories and multiple users

Need to store code (obviously)

– but preferable also binaries, documentation, tests, ...

Locking vs. concurrent

– Lock: one user has (part of) code, unlocks when done

– Concurrent (lazy locking): several users can work simultaneously on the same system

Centralized vs. Distributed

– Centralized: Only the master repository contains complete version history

– Distributed: all repositories have complete history

Support for merging

Roel Wuyts
Creative Commons License 4 418

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Merges

Two-way merge Three-way merge

Roel Wuyts
Creative Commons License 4 419

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example

One framework,

instantiated for two different clients,

each with their own customizations,

Where there is a stable version,

and two development branches

– a new version and a brand new one

– one dependent on the customization of the framework for one particular client

Roel Wuyts
Creative Commons License 4 420

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Let’s view two systems

Concurrent, centralized systems:

– Subversion (svn)

– Envy

Concurrent, distributed system:

– git

(Many more exist, but svn is archetypical for most popular tools like cvs/git, and Envy is a contrast)

Roel Wuyts
Creative Commons License 4 421

Roel Wuyts – Design of Software Systems

Creative Commons License 4

svn : Subversion

descendant of cvs (concurrent versioning system)

Granularity: file

Users work detached from the repository:

– Load local copy of files from svn server (repository)

– Work on local copy (working directory)

– Commit changed files back to repository

Loading local copy can be done from the network

Roel Wuyts
Creative Commons License 4 422

Roel Wuyts – Design of Software Systems

Creative Commons License 4

svn Workflow

Check-out code from repository in local environment

Work on code.

– can at all time see the difference between the current change and the state when checked-out

When finished, commit changes back to repository

– can trigger (3-way) merge when repository was updated in the meantime

Roel Wuyts
Creative Commons License 4 423

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Semantics

svn (like cvs, git, …) versions text

– has no semantics about what text it stores

– works with latex files, C++ files, ...

Therefore its operations have no semantics

– e.g. looking at changes after doing a renaming a method refactoring result in a list of textual changes
to potentially many files

• can be hard to know it was a refactoring, especially when combined when several other changes

• commit often, and add comments !

Roel Wuyts
Creative Commons License 4 424

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Envy

It’s a versioning system, but not as you know it ;-)

Users are meant to be always connected to the repository

– can work separately but that is the exception

Works with methods, classes, ...

– Versioning knows about your language concepts

• e.g. have all versions for a particular class, automatically includes all methods for that version of the class

– Smallest granularity is a method

Roel Wuyts
Creative Commons License 4 425

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Envy Workflow

Load code from repository in local environment

Work on code.

– Every change of a method or a class automatically (!) creates an edition

– These editions can be compared with, restored, …

Editions can be versioned

– the edition then gets a name and version number

– once versioned everybody in the repository can see and load versions

• easier and earlier integration and conflict detection

Roel Wuyts
Creative Commons License 4 426

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Envy: Configuration Management features

From the ground up Envy has support for configuration management

– Applications group classes and methods

• can have editions and versions themselves

• have prerequisite versions (!)

– Configurations group applications

• (e.g. Manifests in Microsoft .Net)

– Support for conditional loading and prerequisites

• Platform-specific code, for example

• Can be at application or configuration level

Removes need for external build systems like cmake, Maven, …

Roel Wuyts
Creative Commons License 4 427

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Git

Distributed version control system

– Breaks the master/slave relationship prevalent in cvs/svn

• every repository has the complete history

• repositories sync with each other

– Good support for branching and advanced forms of version management (cherry picking, reverting
changes, …)

– Like svn/cvs/…: stores text

Roel Wuyts
Creative Commons License 4 428

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Git workflow

Many possibilities

Can of course do the centralised workflow
(as in centralised approaches like svn/Envy/…)

Roel Wuyts
Creative Commons License 4 429

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Git workflow

Integration-Manager Workflow

Dictator and Lieutenants Workflow

Roel Wuyts
Creative Commons License 4 430

Roel Wuyts – Design of Software Systems

Creative Commons License 4

On granularity...

With svn/git/…, you have a history of the files you’ve checked in

With Envy, you have a history of the development you did

This is fundamentally different !

Roel Wuyts
Creative Commons License 4 431

Roel Wuyts – Design of Software Systems

Creative Commons License 4

What is Envy doing in Eclipse ?!

Roel Wuyts
Creative Commons License 4 432

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Concepts in Code Repositories

Code

Package

Configuration

Packages and Namespaces should be orthogonal

– package contains definitions

– namespaces is a visibility mechanism

Roel Wuyts
Creative Commons License 4 433

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Versioning

All the elements need to be versionable

Decisions, decisions:

– granularity of version

• line of code, method, class+methods, package, ...

– forms of version numbers

• single number, composed number, alphanumeric

– version numbers versus release numbers

• and their relationships

Roel Wuyts
Creative Commons License 4 434

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Concrete example : Menu Framework

Roel Wuyts
Creative Commons License 4 435

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Menu Framework with Visitor

Roel Wuyts
Creative Commons License 4 436

Roel Wuyts – Design of Software Systems

Creative Commons License 4

C++ Files

Files can go in cvs

– But decomposition is not the right one

– What if the visitor traversal needs to be changed?

Roel Wuyts
Creative Commons License 4 437

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Java Packages

Packages to regroup classes, storage still in files

Decomposition still not the right one

– What would be the right decomposition?

Roel Wuyts
Creative Commons License 4 438

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Smalltalk class extensions

Packages defines classes and/or methods

– Can be different versions, under control of different people/project/companies

Roel Wuyts
Creative Commons License 4 439

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Note: declarative packages

Package systems should support software engineering and design principles

– e.g. packaging Visitor pattern

Approaches exist but should become mainstream

– Smalltalk’s class extensions

– C# Partial classes and extension methods

– Java Open Classes (for example in MultiJava)

– …

PS: or multi-methods in Lisp (and from there other languages)

Roel Wuyts
Creative Commons License 4 440

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Software-engineering wise

Important to be able to separate development into logical, manageable pieces

– e.g. Visitor design pattern

Each piece should have:

– owners & responsibles

– versions

– dependencies

– post-load and pre-unload statements

Roel Wuyts
Creative Commons License 4 441

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Corollary

Good packages support evolution

– Company can sell parsetree

– Other company can sell visitor for parsetree

Code repositories and packages should support flexible forms of packaging code

Code repositories, packaging & storage are linked

Roel Wuyts
Creative Commons License 4 442

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Sidenote

Design question:

– why is the plug-in mechanism in Eclipse so difficult?

Roel Wuyts
Creative Commons License 4 443

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Last but not least

We discussed granularity

– want to see the development you really did, not the changes you made

Nice example: Refactoring Scripts in Eclipse

– Record and replay the refactorings you did

Why is this practical ?

Roel Wuyts
Creative Commons License 4 444

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Saving & Replaying Refactoring Scripts

Roel Wuyts
Creative Commons License 4 445

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Conclusion

Need for supporting Multi-user development

– code repositories with concurrent access

– version support

– (automatic) merge support

– configuration management

Current systems are quite weak

– svn/git/… & files

– proper packaging mechanisms

– watch out for newer offerings

Roel Wuyts
Creative Commons License 4 446

Roel Wuyts – Design of Software Systems

Creative Commons License 4

References

Subversion: https://subversion.apache.org/

git: http://git-scm.com/book

Envy overview: http://stephane.ducasse.free.fr/FreeBooks/ByExample/36%20-
%20Chapter%2034%20-%20ENVY.pdf

Envy: Joseph Pelrine, Alan Knight, Adrian Cho, Mastering ENVY/Developer, Cambridge University
Press, 2001.

Smalltalk Class Extensions: https://www.youtube.com/watch?v=VNi_VQMosXQ

http://git-scm.com/book
http://stephane.ducasse.free.fr/FreeBooks/ByExample/36 - Chapter 34 - ENVY.pdf
https://www.youtube.com/watch?v=VNi_VQMosXQ

Roel Wuyts
Creative Commons License 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

License: Creative Commons 4.0

447

http://creativecommons.org/licenses/by-sa/4.0/

