
Design of Software Systems
(Ontwerp van SoftwareSystemen)

Roel Wuyts

2015-2016

7 On Multi-user Development Tools,Versioning and 
Packaging of code, their Relations, the Universe and 
Everything.



Roel Wuyts
Creative Commons License 4 2

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Developing Complex Systems

How do scientific disciplines construct complex systems ?



Roel Wuyts
Creative Commons License 4 3

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Architectural Software



Roel Wuyts
Creative Commons License 4 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

RF/mW Design & Analog/RFIC Verification



Roel Wuyts
Creative Commons License 4 5

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Visualization & Manipulation of molecules



Roel Wuyts
Creative Commons License 4 6

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Computer Science/Engineering…



Roel Wuyts
Creative Commons License 4 7

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Corollary

We need to construct systems that are typically more complex than in 
other disciplines

– for several reasons

We have tangible elements to manipulate

– Buildings, circuits and molecules need a representation that is different than 
their physical one

Yet lots of developers still seem to prefer basic tools

– yes, emacs is a basic tool...



Roel Wuyts
Creative Commons License 4 8

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Eclipse/Netbeans/IntelliJ/… ?



Roel Wuyts
Creative Commons License 4 9

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Eclipse...

Eclipse is a decent integrated development environment

– integrates navigation, editing, unit tests, refactoring, ...

– was developed by a lot of former Smalltalk people :-)

But at its core it is file-based (and so are most others)

– So ? Why don’t I like this ?



Roel Wuyts
Creative Commons License 4 10

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Files versus Objects

Non computer science disciplines:

– Architects work with construction materials&buildings

• So do their tools

– Molecular biologists work with modules

• Environment manipulates molecules

– ...

We work with objects

– Most tools deal with files ?!



Roel Wuyts
Creative Commons License 4 11

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Smalltalk image approach

The Smalltalk image is a live environment

– consists entirely of objects

– objects are manipulated

Files are one way of storing objects

– code too, since code are objects

– Databases are another mechanism, or network sockets or ...



Roel Wuyts
Creative Commons License 4 12

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Sidenote on Environments

Good developers tailor their environment

– So they need to be easily extensible

• emacs: easy

• Smalltalk environments: easy

• Eclipse: possible

• Most environments: hard or not possible

Always favour an extensible one

– control your tools!



Roel Wuyts
Creative Commons License 4 13

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Multi-user Development

Software engineering is a teamsport ;-)

Needed

– a code repository that allows multiple users

– integrated versioning

– configuration management

The language also has packaging mechanisms

– with or without namespaces

These concepts cross-cut



Roel Wuyts
Creative Commons License 4 14

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Code repositories and multiple users

Need to store code (obviously)

– but preferable also binaries, documentation, tests, ...

Locking vs. concurrent

– Lock: one user has (part of) code, unlocks when done

– Concurrent (lazy locking): several users can work simultaneously on the 
same system

Centralized vs. Distributed

– Centralized: Only the master repository contains complete version history

– Distributed: all repositories have complete history

Support for merging



Roel Wuyts
Creative Commons License 4 15

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Merges

Two-way merge Three-way merge



Roel Wuyts
Creative Commons License 4 16

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example

One framework,

instantiated for two different clients,

each with their own customizations,

Where there is a stable version,

and two development branches

– a new version and a brand new one

– one dependent on the customization of the framework for one particular 
client



Roel Wuyts
Creative Commons License 4 17

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Let’s view two systems

Concurrent, centralized systems:

– Subversion (svn)

– Envy

Concurrent, distributed system:

– git

(Many more exist, but svn is archetypical for most popular tools like 
cvs/git, and Envy is a contrast)



Roel Wuyts
Creative Commons License 4 18

Roel Wuyts – Design of Software Systems

Creative Commons License 4

svn : Subversion

descendant of cvs (concurrent versioning system)

Granularity: file

Users work detached from the repository:

– Load local copy of files from svn server (repository)

– Work on local copy (working directory)

– Commit changed files back to repository

Loading local copy can be done from the network



Roel Wuyts
Creative Commons License 4 19

Roel Wuyts – Design of Software Systems

Creative Commons License 4

svn Workflow

Check-out code from repository in local environment

Work on code.

– can at all time see the difference between the current change and the state 
when checked-out

When finished, commit changes back to repository

– can trigger (3-way) merge when repository was updated in the meantime



Roel Wuyts
Creative Commons License 4 20

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Semantics

svn (like cvs, git, …) versions text

– has no semantics about what text it stores

– works with latex files, C++ files, ...

Therefore its operations have no semantics

– e.g. looking at changes after doing a renaming a method refactoring result 
in a list of textual changes to potentially many files

• can be hard to know it was a refactoring, especially when combined when several other 
changes

• commit often, and add comments !



Roel Wuyts
Creative Commons License 4 21

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Envy

It’s a versioning system, but not as you know it ;-)

Users are meant to be always connected to the repository

– can work separately but that is the exception

Works with methods, classes, ...

– Versioning knows about your language concepts

• e.g. have all versions for a particular class, automatically includes all methods for that 
version of the class

– Smallest granularity is a method



Roel Wuyts
Creative Commons License 4 22

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Envy Workflow

Load code from repository in local environment

Work on code. 

– Every change of a method or a class automatically (!) creates an edition

– These editions can be compared with, restored, …

Editions can be versioned

– the edition then gets a name and version number

– once versioned everybody in the repository can see and load versions

• easier and earlier integration and conflict detection



Roel Wuyts
Creative Commons License 4 23

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Envy: Configuration Management features

From the ground up Envy has support for configuration management

– Applications group classes and methods

• can have editions and versions themselves

• have prerequisite versions (!)

– Configurations group applications

• (e.g. Manifests in Microsoft .Net)

– Support for conditional loading and prerequisites

• Platform-specific code, for example

• Can be at application or configuration level

Removes need for external build systems like cmake, Maven, …



Roel Wuyts
Creative Commons License 4 24

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Git

Distributed version control system

– Breaks the master/slave relationship prevalent in cvs/svn

• every repository has the complete history

• repositories sync with each other

– Good support for branching and advanced forms of version management 
(cherry picking, reverting changes, …)

– Like svn/cvs/…: stores text



Roel Wuyts
Creative Commons License 4 25

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Git workflow

Many possibilities

Can of course do the centralised workflow
(as in centralised approaches like svn/Envy/…)



Roel Wuyts
Creative Commons License 4 26

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Git workflow

Integration-Manager Workflow

Dictator and Lieutenants Workflow



Roel Wuyts
Creative Commons License 4 27

Roel Wuyts – Design of Software Systems

Creative Commons License 4

On granularity...

With svn/git/…, you have a history of the files you’ve checked in

With Envy, you have a history of the development you did

This is fundamentally different !



Roel Wuyts
Creative Commons License 4 28

Roel Wuyts – Design of Software Systems

Creative Commons License 4

What is Envy doing in Eclipse ?!



Roel Wuyts
Creative Commons License 4 29

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Concepts in Code Repositories

Code

Package

Configuration

Packages and Namespaces should be orthogonal

– package contains definitions

– namespaces is a visibility mechanism



Roel Wuyts
Creative Commons License 4 30

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Versioning

All the elements need to be versionable

Decisions, decisions:

– granularity of version

• line of code, method, class+methods, package, ...

– forms of version numbers

• single number, composed number, alphanumeric

– version numbers versus release numbers

• and their relationships



Roel Wuyts
Creative Commons License 4 31

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Concrete example : Menu Framework



Roel Wuyts
Creative Commons License 4 32

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Menu Framework with Visitor



Roel Wuyts
Creative Commons License 4 33

Roel Wuyts – Design of Software Systems

Creative Commons License 4

C++ Files

Files can go in cvs

– But decomposition is not the right one

– What if the visitor traversal needs to be changed?



Roel Wuyts
Creative Commons License 4 34

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Java Packages

Packages to regroup classes, storage still in files

Decomposition still not the right one

– What would be the right decomposition?



Roel Wuyts
Creative Commons License 4 35

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Smalltalk class extensions

Packages defines classes and/or methods

– Can be different versions, under control of different 
people/project/companies



Roel Wuyts
Creative Commons License 4 36

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Note: declarative packages

Package systems should support software engineering and design 
principles

– e.g. packaging Visitor pattern

Approaches exist but should become mainstream

– Smalltalk’s class extensions

– C# Partial classes and extension methods

– Java Open Classes (for example in MultiJava)

– …

PS: or multi-methods in Lisp (and from there other languages)



Roel Wuyts
Creative Commons License 4 37

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Software-engineering wise

Important to be able to separate development into logical, manageable 
pieces

– e.g. Visitor design pattern

Each piece should have:

– owners & responsibles

– versions

– dependencies

– post-load and pre-unload statements



Roel Wuyts
Creative Commons License 4 38

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Corollary

Good packages support evolution

– Company can sell parsetree

– Other company can sell visitor for parsetree

Code repositories and packages should support flexible forms of packaging 
code

Code repositories, packaging & storage are linked



Roel Wuyts
Creative Commons License 4 39

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Sidenote

Design question:

– why is the plug-in mechanism in Eclipse so difficult?



Roel Wuyts
Creative Commons License 4 40

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Last but not least

We discussed granularity

– want to see the development you really did, not the changes you made

Nice example: Refactoring Scripts in Eclipse

– Record and replay the refactorings you did

Why is this practical ?



Roel Wuyts
Creative Commons License 4 41

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Saving & Replaying Refactoring Scripts



Roel Wuyts
Creative Commons License 4 42

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Conclusion

Need for supporting Multi-user development

– code repositories with concurrent access

– version support

– (automatic) merge support

– configuration management

Current systems are quite weak

– svn/git/… & files

– proper packaging mechanisms

– watch out for newer offerings



Roel Wuyts
Creative Commons License 4 43

Roel Wuyts – Design of Software Systems

Creative Commons License 4

References

Subversion: https://subversion.apache.org/

git: http://git-scm.com/book

Envy overview: 
http://stephane.ducasse.free.fr/FreeBooks/ByExample/36%20-
%20Chapter%2034%20-%20ENVY.pdf

Envy: Joseph Pelrine, Alan Knight, Adrian Cho, Mastering ENVY/Developer, 
Cambridge University Press, 2001.

Smalltalk Class Extensions: 
https://www.youtube.com/watch?v=VNi_VQMosXQ

http://git-scm.com/book
http://stephane.ducasse.free.fr/FreeBooks/ByExample/36 - Chapter 34 - ENVY.pdf
https://www.youtube.com/watch?v=VNi_VQMosXQ


Roel Wuyts
Creative Commons License 4 44

Roel Wuyts – Design of Software Systems

Creative Commons License 4

License: Creative Commons 4.0 http://creativecommons.org/licenses/by-sa/4.0/


