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Developing Complex Systems

How do scientific disciplines construct complex systems ?
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Architectural Software
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RF/mW Design & Analog/RFIC Verification
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Visualization & Manipulation of molecules
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Computer Science/Engineering…
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Corollary

We need to construct systems that are typically more complex than in 
other disciplines

– for several reasons

We have tangible elements to manipulate

– Buildings, circuits and molecules need a representation that is different than 
their physical one

Yet lots of developers still seem to prefer basic tools

– yes, emacs is a basic tool...
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Eclipse/Netbeans/IntelliJ/… ?
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Eclipse...

Eclipse is a decent integrated development environment

– integrates navigation, editing, unit tests, refactoring, ...

– was developed by a lot of former Smalltalk people :-)

But at its core it is file-based (and so are most others)

– So ? Why don’t I like this ?
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Files versus Objects

Non computer science disciplines:

– Architects work with construction materials&buildings

• So do their tools

– Molecular biologists work with modules

• Environment manipulates molecules

– ...

We work with objects

– Most tools deal with files ?!
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Smalltalk image approach

The Smalltalk image is a live environment

– consists entirely of objects

– objects are manipulated

Files are one way of storing objects

– code too, since code are objects

– Databases are another mechanism, or network sockets or ...
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Sidenote on Environments

Good developers tailor their environment

– So they need to be easily extensible

• emacs: easy

• Smalltalk environments: easy

• Eclipse: possible

• Most environments: hard or not possible

Always favour an extensible one

– control your tools!
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Multi-user Development

Software engineering is a teamsport ;-)

Needed

– a code repository that allows multiple users

– integrated versioning

– configuration management

The language also has packaging mechanisms

– with or without namespaces

These concepts cross-cut
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Code repositories and multiple users

Need to store code (obviously)

– but preferable also binaries, documentation, tests, ...

Locking vs. concurrent

– Lock: one user has (part of) code, unlocks when done

– Concurrent (lazy locking): several users can work simultaneously on the 
same system

Centralized vs. Distributed

– Centralized: Only the master repository contains complete version history

– Distributed: all repositories have complete history

Support for merging
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Merges

Two-way merge Three-way merge
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Example

One framework,

instantiated for two different clients,

each with their own customizations,

Where there is a stable version,

and two development branches

– a new version and a brand new one

– one dependent on the customization of the framework for one particular 
client
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Let’s view two systems

Concurrent, centralized systems:

– Subversion (svn)

– Envy

Concurrent, distributed system:

– git

(Many more exist, but svn is archetypical for most popular tools like 
cvs/git, and Envy is a contrast)
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svn : Subversion

descendant of cvs (concurrent versioning system)

Granularity: file

Users work detached from the repository:

– Load local copy of files from svn server (repository)

– Work on local copy (working directory)

– Commit changed files back to repository

Loading local copy can be done from the network
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svn Workflow

Check-out code from repository in local environment

Work on code.

– can at all time see the difference between the current change and the state 
when checked-out

When finished, commit changes back to repository

– can trigger (3-way) merge when repository was updated in the meantime
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Semantics

svn (like cvs, git, …) versions text

– has no semantics about what text it stores

– works with latex files, C++ files, ...

Therefore its operations have no semantics

– e.g. looking at changes after doing a renaming a method refactoring result 
in a list of textual changes to potentially many files

• can be hard to know it was a refactoring, especially when combined when several other 
changes

• commit often, and add comments !
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Envy

It’s a versioning system, but not as you know it ;-)

Users are meant to be always connected to the repository

– can work separately but that is the exception

Works with methods, classes, ...

– Versioning knows about your language concepts

• e.g. have all versions for a particular class, automatically includes all methods for that 
version of the class

– Smallest granularity is a method
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Envy Workflow

Load code from repository in local environment

Work on code. 

– Every change of a method or a class automatically (!) creates an edition

– These editions can be compared with, restored, …

Editions can be versioned

– the edition then gets a name and version number

– once versioned everybody in the repository can see and load versions

• easier and earlier integration and conflict detection
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Envy: Configuration Management features

From the ground up Envy has support for configuration management

– Applications group classes and methods

• can have editions and versions themselves

• have prerequisite versions (!)

– Configurations group applications

• (e.g. Manifests in Microsoft .Net)

– Support for conditional loading and prerequisites

• Platform-specific code, for example

• Can be at application or configuration level

Removes need for external build systems like cmake, Maven, …
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Git

Distributed version control system

– Breaks the master/slave relationship prevalent in cvs/svn

• every repository has the complete history

• repositories sync with each other

– Good support for branching and advanced forms of version management 
(cherry picking, reverting changes, …)

– Like svn/cvs/…: stores text
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Git workflow

Many possibilities

Can of course do the centralised workflow
(as in centralised approaches like svn/Envy/…)
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Git workflow

Integration-Manager Workflow

Dictator and Lieutenants Workflow
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On granularity...

With svn/git/…, you have a history of the files you’ve checked in

With Envy, you have a history of the development you did

This is fundamentally different !
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What is Envy doing in Eclipse ?!
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Concepts in Code Repositories

Code

Package

Configuration

Packages and Namespaces should be orthogonal

– package contains definitions

– namespaces is a visibility mechanism
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Versioning

All the elements need to be versionable

Decisions, decisions:

– granularity of version

• line of code, method, class+methods, package, ...

– forms of version numbers

• single number, composed number, alphanumeric

– version numbers versus release numbers

• and their relationships
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Concrete example : Menu Framework
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Menu Framework with Visitor
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C++ Files

Files can go in cvs

– But decomposition is not the right one

– What if the visitor traversal needs to be changed?
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Java Packages

Packages to regroup classes, storage still in files

Decomposition still not the right one

– What would be the right decomposition?
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Smalltalk class extensions

Packages defines classes and/or methods

– Can be different versions, under control of different 
people/project/companies
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Note: declarative packages

Package systems should support software engineering and design 
principles

– e.g. packaging Visitor pattern

Approaches exist but should become mainstream

– Smalltalk’s class extensions

– C# Partial classes and extension methods

– Java Open Classes (for example in MultiJava)

– …

PS: or multi-methods in Lisp (and from there other languages)
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Software-engineering wise

Important to be able to separate development into logical, manageable 
pieces

– e.g. Visitor design pattern

Each piece should have:

– owners & responsibles

– versions

– dependencies

– post-load and pre-unload statements
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Corollary

Good packages support evolution

– Company can sell parsetree

– Other company can sell visitor for parsetree

Code repositories and packages should support flexible forms of packaging 
code

Code repositories, packaging & storage are linked
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Sidenote

Design question:

– why is the plug-in mechanism in Eclipse so difficult?
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Last but not least

We discussed granularity

– want to see the development you really did, not the changes you made

Nice example: Refactoring Scripts in Eclipse

– Record and replay the refactorings you did

Why is this practical ?
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Saving & Replaying Refactoring Scripts
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Conclusion

Need for supporting Multi-user development

– code repositories with concurrent access

– version support

– (automatic) merge support

– configuration management

Current systems are quite weak

– svn/git/… & files

– proper packaging mechanisms

– watch out for newer offerings
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