Design of Software Systems
(Ontwerp van SoftwareSystemen)

5 Unit Testing, Refactoring and Profiling

Roel Wuyts
2015-2016

A golden rule...

Make it Work
Make it Right
Make it Fast

Roel Wuyts — Design of Software Systems

Creative Commons License 4

How does this work?

First make sure the software does what you want

— use unit tests

Then rework the code until it speaks for itself

— use refactorings

Then optimize the performance, if needed

— use profiling

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Unit Testing

test individual components

Module Testing

test a collection of related components

Sub-System Testing

test sub-system interface mismatches

System Testing

* test interactions between sub-systems
* tests that the complete system fulfils requirements

Acceptance Testing

test system with real rather than simulated data

Unit Testing

How can I trust that changes did not destroy something?
What is my confidence in the system ?
How do I write tests?

What is unit testing?

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Tests represent your trust in the system

Build them incrementally
— Do not need to focus on everything

- When a new bug shows up: write a test

Even better: test first!
— Act as your first client

- Helps finding proper interfaces

Tests are active documentation: they are always in sync

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Testing Style

“The style here is to write a few lines of code, then a test that should run,
or even better, to write a test that won't run, then write the code that will
make it run.”

— write unit tests that thoroughly test a single class
— write tests as you develop (even before you implement)

— write tests for every new piece of functionality

“"Developers should spend 25-50% of their time developing tests.”

Roel Wuyts — Design of Software Systems

Creative Commons License 4

But I can’t cover anything!

Sure! Nobody can but:

- When someone discovers a defect in your code, first write a test that
demonstrates the defect.

— Then debug until the test succeeds.

“"Whenever you are tempted to type something into
a print statement or a debugger expression, write it
as a test instead.”

Martin Fowler

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Unit Testing

Ensure that you get the specified behaviour of the public interface of a
class

- Normally tests a single class

General setup of a test:
— Create a context,
— Send a stimulus,
— Check the results

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Example

public class SaleTest extends TestCase
{
/...
public void testMakeLineltem() {
Sale fixture = new Sale();
Money total = new Money(7.5);
Money price = new Money(2.5);
ltemID id = new ItemID(1);
ProductDescription desc = new ProductDescription(id, price, “product 17);

sale.makelLineltem(desc, 1);
sale.makeLineltem(desc, 2);

assertTrue(sale.getTotal().equals(total));

Roel Wuyts — Design of Software Systems

Creative Commons License 4

About Failures and Errors

A failure is a failed assertion

- i.e., an anticipated problem that you test.

e assertEquals(2, myContainer.nrOfElements())

An error is a condition you didn’t check for.

— e.g. an exception being thrown you did expect

boolean isExceptionThrown = false; \
try {
myContainer.get(3);
} catch(IndexOutOfBoundsException e) {
ISEXceptionThrown = true,

}

assertTrue(iskexceptionThrown);

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Good Unit Tests

Are repeatable

— have to be deterministic to be useful

Require no human intervention

— so that they can be automated

Are “self-described” and tell a story

— to serve as documentation

Change less often than the system

- they encode stable functionality

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Designing tests

Build simple tests

Check that failures are caught

Run tests frequently (every couple of minutes)

Test Infrastructure code first, then application-specific code
Reuse as much test code as you can (tests are code!)
Write small tests that test one particular aspect

Make sure the tests are deterministic

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Why spending time testing?

Find problems soon.

— in context of what you were doing!
Serve as documentation.

Ease maintenance and evolution.

- new developers jump in anytime..

Have something to show all the time.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Testing Frameworks

Tests have to be repeatable

Unit Testing Frameworks implement necessary infrastructure so that you
can set up your tests, run them frequently, and see the results

SUnit is “the mother of all unit test frameworks”
— started in Smalltalk

- fanned out to all kinds of other languages
e JUnit, NUnit, CppUnit, ...

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Junit (inspired by Sunit) is a simple “testing framework” that provides:
— classes for writing Test Cases and Test Suites
— methods for setting up and cleaning up test data (“fixtures”)
- methods for making assertions

- textual and graphical tools for running tests

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Testing Frameworks

Key parts
— TestCase: bundles test methods
- Some mechanism to execute test code
— (methods, macroes, ...)

— Fixture (= Resource): known set of objects that serves as a base for a set
of test cases

— TestSuite: bundles testcases so that they can be run together

— TestRunner: runs a testsuite, outputting results

Roel Wuyts — Design of Software Systems

Creative Commons License 4

A testing scenario

The framework calls the test methods that you define for your test cases
— You need to declare a TestRunner
- You specify who will gather the results
- You add the needed tests to the runner

— You run the TestRunner

e this automatically runs all tests, collecting the results

— You pass the results to an Outputter

Roel Wuyts — Design of Software Systems

Creative Commons License 4

A testing scenario

The framework calls the test methods that you define for your test cases

| ‘TestRunner | | :TestSuite | | tc:TestCase | |tr:TestResuIt|
| | |

|
run(tr) :

» run(tr)

| run(te)

|

runBare

setUp

runTest —

14T

addFailure

tearDown o Rl o e e =
Reameind, , I F—— O

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Setup and TearDown

Executed before and after each test
- setUp allows us to specify and reuse the context

— tearDown makes us clean-up afterwards

#setUp #tearDown

Test method

fAsailt floarDo #dseill Sloalo deetl #laada

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Example unit test for an online ordering system

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Mocking & Stubbing

Example unit test for an online ordering system

public class OrderStateTester extends TestCase {

private static String TALISKER = "Talisker";

private static String HIGHLAND PARK = "Highland Park";
private Warehouse warehouse = new WarehouseImpl () ;
protected void setUp () throws Exception ({

warehouse.add (TALISKER, 50);
warehouse.add (HIGHLAND_PARK, 25);
}
public void testOrderIsFilledIfEnoughInWarehouse () {
Order order = new Order (TALISKER, 50);
order.fill (warehouse) ;
assertTrue (order.isFilled()) ;
assertEquals (0, warehouse.getInventory (TALISKER)) ;
}
public void testOrderDoesNotRemoveIlfNotEnough () {
Order order = new Order (TALISKER, 51);
order.fill (warehouse) ;
assertFalse (order.isFilled());
assertEquals (50, warehouse.getInventory (TALISKER)) ;

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Mocking & Stubbing

Example unit test for an online ordering system

public class OrderStateTester extends TestCase {

private static String TALISKER = "Talisker";
private static String HIGHLAND PARK = "Highland Park";
private Warehouse warehouse = new WarehouseImpl () ;
protected void setUp () throws Exception ({
warehouse.add (TALISKER, 50); Collaborator (wharehouse)

warehouse.add (HIGHLAND PARK, 25);

}

public void testOrderIsFilledIfEnoughInWarehouse () {
Order order = new Order (TALISKER, 50);

order.fill (warehouse); < teSted ObJeCt

assertTrue (order.isFilled()) ; “system under test” (SUT)
assertEquals (0, warehouse.getInven

(TALISKER)) ;

public void testOrderDoesNotRemoveIlfNot
Order order = new Order (TALISKER, 51);
order.fill (warehouse);
assertFalse (order.isFilled());

assertEquals (50, warehouse.getInventory (TALISKER)) ; state verification

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Mocking & Stubbing

Using mocking (jMock library example)

public class OrderInteractionTester extends MockObjectTestCase {
private static String TALISKER = "Talisker";

public void testFillingRemovesInventoryIfInStock() {
Order order = new Order (TALISKER, 50); seu“)-daui
Mock warehouseMock = new Mock (Warehouse.class);

warehouseMock.expects (once ()) .method ("hasInventory") seﬂu)-expecEmOns
.with (eq(TALISKER),eq(50))
.will (returnValue (true));
warehouseMock.expects (once ()) .method ("remove™)
.with (eq(TALISKER), eqg(50))
.after ("hasInventory");

order.fill ((Warehouse) warehouseMock.proxy()): exercise
warehouseMock.ver}fyf); Veﬂﬂ/
assertTrue (order.isFilled())

More info: http://martinfowler.com/articles/mocksArentStubs.htmi

Roel Wuyts — Design of Software Systems

Creative Commons License 4

http://martinfowler.com/articles/mocksArentStubs.html

Refactorings

Refactoring
- What is it?
— Why is it necessary?
- Examples
— Tool support

— Obstacles to refactoring

Roel Wuyts — Design of Software Systems

Creative Commons License 4

What is Refactoring?

The process of changing a software system in such a way that it does not
alter the external behaviour of the code, yet improves its internal structure
[Fowl99a]

A behaviour-preserving source-to-source program transformation
[Robe98a]

A change to the system that leaves its behaviour unchanged, but
enhances some non-functional quality - simplicity, flexibility,
understandability, ... [Beck99a]

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Typical Refactorings

Ref;:clsosrsings Method Refactorings Attribute Refactorings
add (g.ub)class 0 add method to class add variable to class
hierarchy
rename class rename method rename variable
remove class remove method remove variable
push method down push variable down
push method up pull variable up
add parameter to method Create accessors
move method to component abstract variable
extract code in new method

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Why Refactoring?

“Grow, don't build software” (Fred Brooks)

“Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.” (Fowler)

Some argue that good design does not lead to code needing refactoring ...

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Why Refactoring?

In reality
— Extremely difficult to get the design right the first time
- You cannot fully understand the problem domain
— You cannot fully understand user requirements
- You cannot really plan how the system will evolve
— Original design is often inadequate

- System becomes brittle, difficult to change

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Why Refactoring?

Refactoring helps you to

- Manipulate code in a safe environment

e Behaviour preserving
— Recreate a situation where evolution is possible

— Understand existing code

Remember: software needs to be maintained

— This is one way to do it safely

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Examples of Refactoring Analysis

Rename Method
— existence of similar methods
— references of method definitions

- references of calls
AddClass
- simple

— namespace use and static references between class structure

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Rename Method

blnce()
X |—= B D
; bince() bince()
Eb= new B(); b‘ fi‘s
b.blne(); C
bince()

Roel Wuyts — Design of Software Systems

Creative Commons License 4

A

balance()

A

R

X |—= B D
¥ balance() balance()
B Db = new B(); %
b.balance|); C
balance()

Rename Method: Do It Yourself

Check if a method does not exist in the class and superclass/subclasses
with the same “name”

Browse all the implementers (method definitions)
Browse all the senders (method invocations)

Edit and rename all implementers

Edit and rename all senders
Remove all implementers

Test

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Rename Method

Rename Method (method, new name)

Preconditions

- no method exists with the signature implied by new name in the inheritance hierarchy that contains
method

- [Smalltalk] no methods with same signature as method outside the inheritance hierarchy of method

- [Java] method is not a constructor

PostConditions
- method has new name
- relevant methods in the inheritance hierarchy have new name

— invocations of changed method are updated to new name

Other Considerations

- Typed/Dynamically Typed Languages => Scope of the renaming

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Add class

A B A B
C D F F
c D

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Add Class

Preconditions
— no class and global variable exists with classname in the same scope
— subclasses are all subclasses of all superclasses
— [Smalltalk] superclasses must contain one class

— [Smalltalk] superclasses and subclasses cannot be metaclasses

Postconditions

— new class is added into the hierarchy with superclasses as superclasses and subclasses as
subclasses

— new class has name classname

— subclasses inherit from new class and not anymore from superclasses

Considerations: Abstractness

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Tool Support

Could do refactoring by hand

- see Rename Method example

But much better if automated
— easier

— safer

Which tools are needed to support refactoring?

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Tool support for refactoring activities

Change Efficiently Failure Proof
Refactoring Tools Regression Testing
- source-to-source program transformation |- Repeating past tests
- behaviour preserving - requires no user interaction
= Improve Structure - IS deterministic

= Verify damage to previous work

Development Environment Configuration&Version Management
- Fast edit-compile-run - track different versions

- Integrated in environment - track who did what

= Convenient = can revert to earlier versions

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Refactoring in Eclipse

|l

3

Roel Wuyts — Design of Software Systems

Creative Commons License 4

) lf##
* Answer the "count" field in the BoseScanner class.
* Breturn Field.
* Ugly construction, but the class and field are not directly accessible.
v/
= protected static Field getCountFiel: dn a0 7
try {) JnNao dh L
(lass=?= domScannerClass = | Re
Class«<?= baseScannerClass = Cave
Field field = baseScannerCly
field.setAccessible(true); Open Declaration F3
) return field; Open Type Hierarchy F4
catch (NoSuchFieldException ex} Open Call Hierarchy “XH
//should not happen since I Quick Outline ¥0O |is declared in class BaseScanner hardcoded above.
AnalysisErrorManager. stop("] Quick Tvpe Hierarchv 3T tting an inherited private field “'count", but it -
t 11; _
y Show In NHEW »
! Cut 3X
e — Copy ##C
Paste EiaY
E_L, Problems | @ Javadoc &3 @) Declarationw E co g DEtaiIsW £ SVN Histnrﬂ@' Progresq
Field be.imec.cleanc.cparser_kernel.ImecDOMScanner.get Source S:ES b _

e count fiald n Refactor HT b Rename... TR
Answer the “count” field in the BaseScanner class. surround With a7 > Move... Ty
Returns: Local History 3 . _

Field. Ugly construction, but the class and field 3 Change Method Signature... “C3C
Search 3 Inline... A
Find Bugs 3 Extract Interface...

Run As > Extract Superclass...
Debug As 3 Use Supertype Where Possible...
Team > Pull Up...
Compare With 3 Push Down...
Replace With [] o
Introduce Indirection...
Preferences... Introduce Parameter Object...
& Remove from Context g Generalize Declared Type...

37

When to Refacctor ?

When you add functionality
— Helps you to understand the code you are modifying.

— Sometimes the existing design does not allow you to easily add the feature.

When you need to fix a bug
— If you get a bug report, it's a sign the code needs refactoring

— because the code was not clear enough for you to see the bug in the first
place

When you do a code review
— Code reviews help spread knowledge through the development team.

— Works best with small review groups

Roel Wuyts — Design of Software Systems

Creative Commons License 4

When to Refactor

You should refactor:

- Any time that you see a better way of doing things
e "Better” means making the code easier to understand and to modify in the future

— You can do so without breaking the code
e Unit tests are essential for this (remember: do not refactor in isolation)

You should NOT refactor:
— Stable code (code that won't ever need to change, code library)

- Someone else’s code <= 2L XP practice!

e Unless you’ve inherited it (and now it’s yours)

Rule of Thumb: ‘Three strikes and you refactor’
- 1st time: Write from scratch
- 2nd time: Duplication eventually admissible
- 3rd time: Refactor !!!

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Example: Switch Statements

Switch statements are very rare in properly designed object-oriented code
- Therefore, a switch statement is a simple and easily detected “bad smell”
— Of course, not all uses of switch are bad

— A switch statement should NOT be used to distinguish between various
kinds of object

There are several well-defined refactorings for this case

— The simplest is the creation of subclasses

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Example: Bad Smell

class Animal {
final int MAMMAL = 0, BIRD =1, REPTILE = 2;
Int myKind; // set in constructor

String getSkin() {
switch (myKind) {
case MAMMAL: return "hair";
case BIRD: return "feathers";
case REPTILE: return "scales";
default: return "Integument";

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Example: Improved

class Animal {
String getSkin() {

return "integument”;

}
}

class Mammal extends Animal {
String getSkin() {

return "hair"; }

}

class Bird extends Animal {
String getSkin() {

return "feathers":

}
}

class Reptile extends Animal {
String getSkin() {

return "scales":

}

Roel Wuyts — Design of Software Systems

Creative Commons License 4

JUnit Tests

As we refactor, we need to run (JUnit) tests to ensure that we haven't
introduced errors

public void testGetSkin() {
asserteEquals("hair", myMammal.getSkin());
asserteEquals("feathers"”, myBird.getSkin());
asserteEquals("scales"”, myReptile.getSkin());
asserteEquals("integument”, myAnimal.getSkin());

}

This should work equally well with either implementation
The setUp() method of the test fixture may need to be modified

Re-running unit tests proves that the refactoring succeeded
(= external behavior remained unchanged)

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Refactoring Examples

Add Parameter Extract Method

Change Association Extract Subclass

Change Reference to Value Extract Superclass
Change Value to Reference Form Template Method
Collapse Hierarchy Hide Delegate
Consolidate Conditional Hide Method

Convert Procedures to Objects Inline Class
Decompose Conditional Inline Temp
Encapsulate Collection Introduce Assertion
Encapsulate Downcast Introduce Explain Variable
Encapsulate Field Introduce Foreign Method

Extract Class
Extract Interface

‘ 72 Refactorings identified by Fowler

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Refactoring Example: Collapse Hierarchy

When superclass and subclass are not very different: Merge them

Employee

> Employee

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Refactoring Example: Consolidate Conditional

When the same fragment of code is in all branches: Move it out

double disabilityAmount() double disabilityAmount()

{ {

If (_seniority < if (isNotEligableForDisability())
if (_monthsDisabled > 12) ‘ @
Creturn 0;) /T compute the disability amount
if (1S artTim]
// compute the disability amount

}

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Refactoring Example: Decompose Conditional

When having a complicated conditional statement: Extract if/then/else
parts

If (date.before (SUMMER_START) || date.after(SUMMER_END))
charge = quantity * _winterRate + _winterServiceCharge;
else
charge = quantity * _summerRate,

¢

If (notSummer(date))
charge = winterCharge (quantity);
else charge = summerCharge (quantity);

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Refactoring Example: Encapsulate Collection

When a method returns a collection: Provide Read-only view &
add/remove methods

Person
Person
atroursas 1 Cet getCourseslnmonfiallz)oet
: p Cad Course(Course
(setCourses | Sef) _
Cremme Coursel Lourse] ™
\

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Refactoring Example: Extract Class

When we have 1 class doing the work that should be done by 2:
Create new class, move fields & methods

=> GRASP High Cohesion

. Rersan Telephone Numbey
. ’E%ﬂreaﬂnde o ofice Telephang T
FiLfier
CaficeMLmher ; 1%5 E g
Qe TelephoneMurmber
(et Blephonenuer (et Telephonehmber

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Refactoring Example: Inline Class

When a class isn't doing very much: Merge with other class

Person

EIN

aficeTelephone

Telephone Number

<

getTelephane Murnber

Roel Wuyts — Design of Software Systems

Creative Commons License 4

1

C

areaCode
T Eer

et TelephoneMumber

=

Person

e
< arealode

(FILIMAEr

getTelephane Murnber

Refactoring Example: Encapsulate Downcast

When a method returns an object that needs to be downcasted by its
callers:

— Move the downcast to within the method.

— happens often when a class uses a collection or iterator

Object lastReading() { Reading lastReading() {
return readings.lastElement(); return((Reading))readings.lastElement();

} }

5 mg ? ‘ Reading lastReading = theSite.lastReading();
(Rea INg) heS|te astReading();

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Refactoring Example 9: Extract Method

When we have a code fragment that can be grouped together: turn the
fragment into a method with an explanative name

void printOwing() void printOwing() {
{ printBanner();
} printDetails(getOutstanding());

printBanner();

/Il print detalls

System.out.printin ("name: " + _name);

System.out.printin ("amount” +
getOutstanding());

}

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Bad Smells in Code

Duplicated Code Parallel Inheritance/Interface Hierarchies
Long Method Lazy Class

Large Class Speculative Generality

Long Parameter List Temporary Field

Divergent Change Message Chains

Shotgun Surgery Middle Man

Feature Envy Inappropriate Intimacy

Data Clumps Incomplete Library Class

Primitive Obsession Data Class

Switch Statements Refused Bequest

Comments Alternative Classes with Different Interfaces

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Bad Smells

Where did this term come from?

“If it stinks, change it.”
--Grandma Beck

The basic idea is that there are things in code that cause problems

— Duplicated code, Long methods, ...

But any time you change working code, you run the risk of breaking it

— A good test suite makes refactoring much easier and safer

Bad smells gives inspiration, but are not designed as metrics

- You have to decide yourself when something is “too much?”, ...

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Example: Duplicated Code

If you see the same code structure in more than one place, find a way to
unify them

“"Number one in the stink parade” !

The usual solution is to perform
— ExtractMethod: create a single method from the duplicated code
— Invoke from all places: Use it wherever needed

- You sometimes need additional refactorings (Add Parameter, ...)

This adds the overhead of method calls, thus the code could get a bit
slower

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Other Bad Smells

Long Method

— The longer a procedure is, the more difficult it is to understand.

— Solution: perform EXTRACT METHOD or Decompose Conditional or Replace Temp with
Query.

Large class

— When a class is trying to do too much, it often shows up as too many instance variables.

— Solution: perform EXTRACT CLASS or EXTRACT SUBCLASS

Feature Envy

— A method that seems more interested in a class other than the one it is in.

— Solution: perform MOVE METHOD or EXTRACT METHOD on the jealous bit and get it home.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Other Bad Smells

Shotgun Surgery

— This situation occurs when every time you make a kind of change, you have to make a lot
of little changes to a lot of different classes.

— Solution: perform MOVE METHOD/FIELD or INLINE CLASS bring a whole bunch of behavior
together.

Long Parameter List

- In OO, you don't need to pass in everything the method needs.
Instead, you pass enough so the method can get to everything it needs

— Solution: Use REPLACE PARAMETER WITH METHOD when you can get the data in one
parameter by making a request of an object you already know about.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Bad Smell/Sweet Smell: Comments

Fowler says "comments often are used as a deodorant”

- If you need a comment to explain what a block of code does, use Extract
Method

— If you need a comment to explain what a method does, use Rename
Method

— If you need to describe the required state of the system, use Introduce
Assertion

When you feel the need to write a comment, first try to refactor the code
so that any comment becomes superfluous

The point is that code should be self-explanatory, so that comments are
not necessary.

A comment is a good place to say why you did something

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Java FindBugs

Roel Wuyts — Design of Software Systems

Creative Commons License 4

—

=l

* The activator closs controls the plug-in life cycle
S
public class Activator extends AbstractUIPlugin {

£4 The plug-in 1D
public static final String PLUGIN_ID = "CPPZMSE";

44 The shared instance
privote static Activator plugin;

0) lg'ii
* The constructor
®/

- public Activator() {
i3

- l{"
* (non-Javadoc)
* @zee org.eclipse.ul.plugin.AbstractUIPlugin#start{org.osgl. fromework. BundleContext)

S
a = public void start{BundleContext context) throws Exception {
super.start{context};
. plugin = this;|
b4
- l{"

* (non-Javadoc)

* @zee org.eclipse.ul.plugin.AbstractUIPlugin#stop{org.osgl. framework. BundleContext) :
LY |
& rubhlicr wnid stnandRBund]l aCantrvE contevEdy threonws Fyveantinn 1 .'
i Ty
E',_g Problems (@ Javadoc ﬂ% Declaration (E Console (ﬂn Search (ﬁj Bug User Annotations (ﬁj Bug Details &3 Bl SVN Histnrﬂ (=3 Prngrﬂss} =08
High Priority Doday
In class be.imec.cpp2mse.ui.plugin_Activatar &
In method be.imec.cpp2mse.ui.plugin.Activator.startiBundleContext)
Field be.imec.cpp2mse.ui.plugin.Activator.plugin m‘
Write to static field from instance method
This instance method writes to a static field. This is tricky to get correct if multiple instances are being manipulated. and generally bad practice.
Writahl Smart | rt 31:23 137M of 154M
ritable mart Inse J J ‘ o | “j,;

Obstacles to Refactoring

Performance issue

- “Refactoring will slow down the execution”

Cultural Issues

- “"We pay you to add new features, not to improve the code!”

If it doesn’t break, do not fix it

- “We do not have a problem, this is our software!™

Development is always under time pressure
— Refactoring takes time
— Refactoring better after delivery

- Process should take it into account, like testing

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Conclusion

Refactoring is just a way of rearranging code
— Refactorings are used to solve problems

— If there’s no problem, you shouldn’t refactor

The notion of "bad smells” is a way of helping us recognize when we have
a problem

— Familiarity with bad smells helps us avoid them in the first place

Refactorings are mostly pretty obvious

— Most of the value in discussing them is just to bring them into our
“conscious toolbox”

— Refactorings have names in order to crystalize the idea and help us
remember it

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Profiling

What and how

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Performance Myth

Don’t think that clean software is slow!

Normally only 10% of your system consumes 90% of the resources so just
focus on 10 %.

— Refactorings help to localise the part that need change

— Refactorings help to concentrate the optimisations

Always use a profiler on your "slow” system to guide your optimisation
effort

— Never optimise first!

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Profiling

“Measure the behaviour of a program as it runs”

Note: can profile different things
— execution speed

- memory usage

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Profiling concepts

How does it work?

— Sampling: gather information from time to time
e Less accurate

e Less performance overhead

— Code instrumentation: modify program to analyze itself
e Full instrumentation is very exact
e Slower
e Risc for Heisenbugs

e Can be manual, static, dynamic, ...

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Profiler Tools

Can be integrated in Development Environment
- linked with code: can highlight slow methods, ...

— make profile data understandable and usable

Can be stand-alone

— Nno need to get project in IDE just to profile

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Example: Java Profiling in Eclipse

Java profiling can be installed in Eclipse

— Does Memory and Execution Time profiling

e |ocal or remote

Roel Wuyts — Design of Software Systems

Creative Commons License 4

We have a Java project to profile...

& Java - CarModel.java - Eclipse SDK

File Edit Refactor Source Mavigabe Search Project Fun Window Help
- ORI - R SR N C R I @ T 0 Profiling and L... | &) Java |
RS RS KR
{f Package Explarer 53 Hierarchy | — O || [J] CarMadel.java &2 =0
=| § = “import java.io.BufferedReader: .
[E_'Prl:ﬁ’ﬁjrﬂjﬂtt import java.io.IOException:
S el BroflingDemo import Jjava.ilo.Inputitreambeader:
=84 (defauk package)
= 4] CarModel, java
- E.‘i CarModel public class Moiaelsl={SH] |
. (=3
@ mardstringl])
& = JaksCarlsage(CarMod f* Begquired car part=: 1 Engine, 4 wheels, and 2 doors */
o engine public Engine engine = new Enginei]
- public Wheel[] wheel = new Wheel([4]:
& right public Door left = mew Door (), right = new Door():
o wheel
@ CarModel)
® Gi Door .
B a Engine = publioc CarModel()
B a Wheel { B
* G e goritat 05 4 <4 it s
- m JRE System Library [irel.5.0_07] -
Problems | Javadoc Deda’aﬁmm X Gwipl #B-r9-=0
<rarminated > CarModel [Java apobcation] java, exe (August 4, 2006 5:21:51 PM)
ICarfodel =started b
Henu:
(l)] Simulate car usage
i27 Creatres nwnrafereanced nhisnra b
< >
—
Roel Wuyts — Design of Software Systems

Creative Commons License 4

Profile the main function

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Hierarchy: = 0O m CarMaodel.java =8

1=* ProfileProject
= '[E'J ProfilingDerno
=3 {default package)

=

5a = {ED v| “import Jjava.io.BufferedReader:;
- — TTException:
Cpen F3 put3treatmbEeader;
Open Type Hierarchy F4
Cpen Call Hierarchy Chrl+Alt+H
= m CarModel. java
@ CarModel | of ot Chri+x ¢
03 II" "-TTE'CDW B Cerl+C 5r parts: 1 Engine, 4 wheels,
o angine EE' Copy Qualified Mame engine = new Engine () :
o Ieft | 5| Paste Chrl+Y wheel = new Wheel[4]:
o right ¥ Delete Delete =ft = new Door(), right = new
@ whel Build Path b
& CarModell) g Alk+Shift+5 ¥
G Door Refactar AlL+SHIFLHT ¥ 27 1y
% Engine
Wheel rug Import,,
@ wincow “;“E F O: i < 4: i+4)
, .| 2 Export.. = new Whesl i«
B IRE System Library [jre
References FE
Declarakions v B consale 52 K Eﬁ |

CarModel, mainiSkri

Toggle Method Breakpoink
Fun As

Debug As

Profile As

Compare Wikh

Replace With

Restore from Local History, .

4
4
F
r
g

flication] java.exe (August 4, 2006 5:21:51 PM)

po| 1 Profile on Server Al+Shift+P, R
2 Java Application

Ju 3 JUnik Tesk

=1 4 SWT Application

gg Profile. ..

View results in Profiling perspective

& Profiling and Logging - CarModel. java - Eclipse SDK
Fil= Edit

N il
(%
@'F‘rnﬁl... En

Source Mawigate Search Project Run Window Help

-2 A’ A B b R
B 4B @ AR R

— O cansale o Execubion Statistics X ,@

Refactar

Y | [E] Profiling and L... |$;-,,J Java

-|BO @ ® F % AT

Execution Statistics - CarModel at pwinbook [PID: 2808] (Filker: Mo Filker 1

% B%g
= % CarModel ak rwinbo
= E= <terminated:= f
%‘*’ Basic Memo
& .
(i Execdtion T
'[:5'}{. Method Cor

=Package
= (default package)

= [byte
& [char
= [int

& [lang
(= [short
= [Wheel

= byte

€ CarMaodel

= char

= Doar
(= Engine
= ink

= long
(= shart

it 0.052651

Base Time (sec... Awerage Base ...

0.000454 T,
0000000
0.000000
0.000000
0000000
0.000000
0.000000
0000000

0.000000
0, 000000
0,000000
0.000000
0, 000000
0.000000
0.000000

0.000000
0.010020
0.001064
0.000000
0.000000
0, 000000

0.000000
0.000455
0.000076
0.000000
0000000
0.000000

iZurnulakive Tim, ..

0.052681 T,
0.000000
0.000000
0,000000
0.000000
0.000000
0. 000000
0.000000

0.052651 | ',

0. 000000
0.010044 T,
0.001064 T,
0. 000000
0.000000
0.000000

iZalls
116

M

Roel Wuyts — Design of Software Systems
Creative Commons License 4

Example: VisualVM (http://visualvm.java.net/)

monitor and/or sample CPU time and memory

Easy to use, stand-alone

See video

Roel Wuyts — Design of Software Systems
Creative Commons License 4

TS T — _— . [%] VisualvM 1.3.8

File Applications ¥iew Tools window Help

R AN

#pplications x| =] ...g%;; & arg. broadinstitute. sting. gatk. CorrmandLineGATE (pid 3490) x| =]
=
i g:lisualvrﬂ Owerdiew @ Moiitor |/ Threads rnQ, Sampler |/ (%) Profiler |

& b broadnsiite g aetkcant O org.broadinstitute.sting.gatk.CommandLineGATK (pid 9«
@ Rernote -
\-"M Coredurnps Maonitor

@" [¥] Memory [¢] Classes [w] Threads
&) Snapshots

Uptime: 5 min 21 sec

| Perform GC || Heap Durp |

CPU x Heap | PermGen x

100% N\
1GE

S0%

0% b

0 GE] el el e
9:16 AM 9:18 AM 3:20 AM 9:16 AM 9:18 AM 9120 AM

O CcPU usage [GC activity O Heap size M Used heap

Classes

® | Threads ®
P ——— b
| =—=J
2,000 10 é
o
216 aM 2:12 amM Q20 amM 216 AM 9:1% amM S:E0 AM
|‘| m v 1 Total loaded classes B Shared loaded classes O Live threads W Daernon threads

e

—————

Other useful tools exist for profiling...

“Scalasca” : spot communication&synchronization imbalances in MPI
programs (http://scalasca.org)

Roel Wuyts — Design of Software Systems

Creative Commons License 4

ann
File Display Topology Help

' Cube 3.4 QT: epik_helsim_32_sum_i10t832nodes/ summary.cube.gz

[Absalite
Matric trae |

=] |[Absahite

123,56 Time
W 20106 Visits
D 4] 5'|'I'||:|1 ranizatons

O 0 Paint-to-paint
[7456 Collective
O 6 Remcte Memory Access
& [0 Communications
O o Paint-to-paint
0 1.8965 Sends
0 1.8995 Recenves
O o colective
B.79e4 Exchange
[0 s source
O & As destination
O 6 kemote Memory Access
I:I 2.05¢4 Puts
M 2.05¢4 Gets
B+ O] @ Bytes transferred
O & Paint-ta-paint
O 2 .08¢8 Sent
O 7.08e8 Recened
O o Coliectree
M 2.1867 Oubgaing
M 2.187 Incoming
O 0 Remote Memory ACcess
B [0.00 Computatisnal imbalance

=

O 1.36 Overload
& 1.36 Underload

call trea I Flat view |
) 0.00 MPY_ink

=| |absolute

) 0,00 MP_Comm_rank
O 0.00 MPI_Comm_size
= 0,00 MPI_Barrior
- 0,00 MPI_Win_craate
0 0.00 MP1_Win_lock

= O 0,00 MPY_Win_unlock

= O 0.00 MPY_Initialised
-0 .00 MP_Comm_group
O 0.00 MPComm_creabe
O 0.00 MP_Finalized

O 0.00 MPL_Group_iree
O 0.00 MPI_AcE L late
-0 0.00 MPI_|send

- O 0,00 MP_irecy

- O 0.00 MP1_Waitall

O 0.00 MP_Allredus e
O 0.00 MP_Win_free

L O 0.00 MP_Get

O 0.00 MPM_Camm_fres
B [0.00 MPI_Finalize

-

1.36 {50.00%)

S

Pl
-
Pl

ZIE

1.36 (100.00%)

I@lh

Selected “Point-to-point®

10,00 hy-1-81

- 0,00 k102
i O 0.00 hy-1-03
- [.00 hy-1-04
- [0.00 hy-1-08
g O 0,69 Iy-1-08
g O 0.00 y-1-07
B O 067 Iy-1-08
- O 0.00 ly-1-09
£ O 0.00 ly-1-10
e O 0.00 ky-1-11
- O 0.00 ky-1-12
- O 0.00 ly-1-13
B O 0.00 ly-1-14
- O 0.00 ly-1-15

O 0.00 ky-2-00
O .00 ly-2-01
O 0.00 ly-2-02
O 0.00 ly-2-03
O 0.00 ly-2-04
O 0.00 ly-2-05
O 0.00 Iy-2-06
O 0.00 ky-2-07
O .00 Iy-2-08
O .00 Iy-2-09
O 0.00 ly-2-10
O 0.00 y-2-11

Lo B

Other useful tools exist for profiling...

“Sniper” : fast hardware simulator for detailed analysis
(http://snipersim.org)

@ moaiance-end
mbaiance-stan
sync-unscheduled

mem-aram
) mam-remaote
. mem-i3
B mem-2
B memiic

B e

Bena
Boanen
B issueponD15
B issueport
®- - port3d
issue-por2
B ssueport
B issue-gori0
] depond-dranch
@ aepenen
W ocpans e
@ sscarh wdn

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Sometimes you have to roll your own

1: 6/42267/8.06%

See video on course site

Step 179. 73 leafs, 524257 particles. AvgRe: 269016.45

Cores

. 3 x 3: 3/14367/2.74% |
profile load balancing efficacy per-core over1HnNe-————
5: 3/10626/2.03%
8: 4/12507/2.39%
14 14 1 1 31 31 7: 2/12884/2.46%
8: 1/0/0.00%
9: 3/10404/2.00%
22 14 6 16 23 21 15 10: 1/12353/2.36%
T) 11: 1/16204/3.11%
12: 5/18050/3.44%
4 4 7 2 21 7__|u 13: 4/16071/3.06%
18 |18 |12 |12 |z |o7 14: 6/28123/0.50x EEEE———
15: 3/24016/4.75%
28 15 26 25 3 2 12 iz s |27 16: 2/16146,/2.09%
30 30 20 20 3 13 17: 4/11827/2.26%
18: 4/12767/2.43% =
26 10 29 30 30 3 2 19 13 19: 2/5689/1.07% [
Ry 28 gy 5 TR 20: 3/105635/2.01%
21: 2/15030/3.04%
14 2 1 1 20 20 18 |6 16 |3 22: 1/8064/1.54%
. 23: 2/24721/4.72%
/_’__/N 24: 3/10671/2.02% |——
g S ° 32 265: 2/26363/5.03%
0 R T T N N e
14 8 28 4 30 19 7 6 22 1499 1 31282 27: 4/13470/2.57% EEEEE——
M\ %\ ﬂ\ ﬂ\ B0 1/15005/4.90%
21200 1R 41 29 20 1325 18723 27 1711 18144 183 1 24881 20: 6/34103/6.60X CEE—

AAAAAN A AAA v

31: 3/17056/3.26%
32: 2/142390/2.72%

Conclusion

Make it Work, Make it Right, Make it Fast
Unit testing remove fear of making changes
Refactoring remove fear of making changes

Profiling tells you where to make performance-related changes

— focus your effort

Roel Wuyts — Design of Software Systems

Creative Commons License 4

License: Creative Commons 4.0 http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate
if changes were made. You may do so in any reasonable manner, but not in any way that

® suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

