
Design of Software Systems
(Ontwerp van SoftwareSystemen)

Roel Wuyts

2015-2016

5 Unit Testing, Refactoring and Profiling

Roel Wuyts
Creative Commons License 4 2

Roel Wuyts – Design of Software Systems

Creative Commons License 4

A golden rule...

Make it Work

Make it Right

Make it Fast

Roel Wuyts
Creative Commons License 4 3

Roel Wuyts – Design of Software Systems

Creative Commons License 4

How does this work?

First make sure the software does what you want

– use unit tests

Then rework the code until it speaks for itself

– use refactorings

Then optimize the performance, if needed

– use profiling

Roel Wuyts
Creative Commons License 4 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Testing

Unit Testing test individual components

Module Testing test a collection of related components

Sub-System Testing test sub-system interface mismatches

System Testing
• test interactions between sub-systems
• tests that the complete system fulfils requirements

Acceptance Testing test system with real rather than simulated data

Roel Wuyts
Creative Commons License 4 5

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Unit Testing

How can I trust that changes did not destroy something?

What is my confidence in the system ?

How do I write tests?

What is unit testing?

Roel Wuyts
Creative Commons License 4 6

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Tests

Tests represent your trust in the system

Build them incrementally

– Do not need to focus on everything

– When a new bug shows up: write a test

Even better: test first!

– Act as your first client

– Helps finding proper interfaces

Tests are active documentation: they are always in sync

Roel Wuyts
Creative Commons License 4 7

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Testing Style

“The style here is to write a few lines of code, then a test that should run,
or even better, to write a test that won't run, then write the code that will
make it run.”

– write unit tests that thoroughly test a single class

– write tests as you develop (even before you implement)

– write tests for every new piece of functionality

“Developers should spend 25-50% of their time developing tests.”

Roel Wuyts
Creative Commons License 4 8

Roel Wuyts – Design of Software Systems

Creative Commons License 4

But I can’t cover anything!

Sure! Nobody can but:

– When someone discovers a defect in your code, first write a test that
demonstrates the defect.

– Then debug until the test succeeds.

“Whenever you are tempted to type something into
a print statement or a debugger expression, write it
as a test instead.”

Martin Fowler

Roel Wuyts
Creative Commons License 4 9

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Unit Testing

Ensure that you get the specified behaviour of the public interface of a
class

– Normally tests a single class

General setup of a test:

– Create a context,

– Send a stimulus,

– Check the results

Roel Wuyts
Creative Commons License 4 10

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example

public class SaleTest extends TestCase

{

// …

public void testMakeLineItem() {

Sale fixture = new Sale();

Money total = new Money(7.5);

Money price = new Money(2.5);

ItemID id = new ItemID(1);

ProductDescription desc = new ProductDescription(id, price, “product 1”);

sale.makeLineItem(desc, 1);

sale.makeLineItem(desc, 2);

assertTrue(sale.getTotal().equals(total));

}

Roel Wuyts
Creative Commons License 4 11

Roel Wuyts – Design of Software Systems

Creative Commons License 4

About Failures and Errors

A failure is a failed assertion

– i.e., an anticipated problem that you test.

• assertEquals(2, myContainer.nrOfElements())

An error is a condition you didn’t check for.

– e.g. an exception being thrown you did expect

boolean isExceptionThrown = false;

try {

myContainer.get(3);

} catch(IndexOutOfBoundsException e) {

isExceptionThrown = true;

}

assertTrue(isExceptionThrown);

Roel Wuyts
Creative Commons License 4 12

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Good Unit Tests

Are repeatable

– have to be deterministic to be useful

Require no human intervention

– so that they can be automated

Are “self-described” and tell a story

– to serve as documentation

Change less often than the system

– they encode stable functionality

Roel Wuyts
Creative Commons License 4 13

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Designing tests

Build simple tests

Check that failures are caught

Run tests frequently (every couple of minutes)

Test Infrastructure code first, then application-specific code

Reuse as much test code as you can (tests are code!)

Write small tests that test one particular aspect

Make sure the tests are deterministic

Roel Wuyts
Creative Commons License 4 14

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why spending time testing?

Find problems soon.

– in context of what you were doing!

Serve as documentation.

Ease maintenance and evolution.

– new developers jump in anytime..

Have something to show all the time.

Roel Wuyts
Creative Commons License 4 15

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Testing Frameworks

Tests have to be repeatable

Unit Testing Frameworks implement necessary infrastructure so that you
can set up your tests, run them frequently, and see the results

SUnit is “the mother of all unit test frameworks”

– started in Smalltalk

– fanned out to all kinds of other languages

• JUnit, NUnit, CppUnit, ...

Roel Wuyts
Creative Commons License 4 16

Roel Wuyts – Design of Software Systems

Creative Commons License 4

JUnit overview

Junit (inspired by Sunit) is a simple “testing framework” that provides:

– classes for writing Test Cases and Test Suites

– methods for setting up and cleaning up test data (“fixtures”)

– methods for making assertions

– textual and graphical tools for running tests

Roel Wuyts
Creative Commons License 4 17

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Testing Frameworks

Key parts

– TestCase: bundles test methods

– Some mechanism to execute test code

– (methods, macroes, ...)

– Fixture (≈ Resource): known set of objects that serves as a base for a set
of test cases

– TestSuite: bundles testcases so that they can be run together

– TestRunner: runs a testsuite, outputting results

Roel Wuyts
Creative Commons License 4 18

Roel Wuyts – Design of Software Systems

Creative Commons License 4

A testing scenario

The framework calls the test methods that you define for your test cases

– You need to declare a TestRunner

– You specify who will gather the results

– You add the needed tests to the runner

– You run the TestRunner

• this automatically runs all tests, collecting the results

– You pass the results to an Outputter

Roel Wuyts
Creative Commons License 4 20

Roel Wuyts – Design of Software Systems

Creative Commons License 4

A testing scenario

The framework calls the test methods that you define for your test cases

Roel Wuyts
Creative Commons License 4 21

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Setup and TearDown

Executed before and after each test

– setUp allows us to specify and reuse the context

– tearDown makes us clean-up afterwards

Roel Wuyts
Creative Commons License 4 22

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example unit test for an online ordering system

Roel Wuyts
Creative Commons License 4 23

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Mocking & Stubbing

Example unit test for an online ordering system

public class OrderStateTester extends TestCase {

private static String TALISKER = "Talisker";

private static String HIGHLAND_PARK = "Highland Park";

private Warehouse warehouse = new WarehouseImpl();

protected void setUp() throws Exception {

warehouse.add(TALISKER, 50);

warehouse.add(HIGHLAND_PARK, 25);

}

public void testOrderIsFilledIfEnoughInWarehouse() {

Order order = new Order(TALISKER, 50);

order.fill(warehouse);

assertTrue(order.isFilled());

assertEquals(0, warehouse.getInventory(TALISKER));

}

public void testOrderDoesNotRemoveIfNotEnough() {

Order order = new Order(TALISKER, 51);

order.fill(warehouse);

assertFalse(order.isFilled());

assertEquals(50, warehouse.getInventory(TALISKER));

}

Roel Wuyts
Creative Commons License 4 24

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Mocking & Stubbing

Example unit test for an online ordering system

public class OrderStateTester extends TestCase {

private static String TALISKER = "Talisker";

private static String HIGHLAND_PARK = "Highland Park";

private Warehouse warehouse = new WarehouseImpl();

protected void setUp() throws Exception {

warehouse.add(TALISKER, 50);

warehouse.add(HIGHLAND_PARK, 25);

}

public void testOrderIsFilledIfEnoughInWarehouse() {

Order order = new Order(TALISKER, 50);

order.fill(warehouse);

assertTrue(order.isFilled());

assertEquals(0, warehouse.getInventory(TALISKER));

}

public void testOrderDoesNotRemoveIfNotEnough() {

Order order = new Order(TALISKER, 51);

order.fill(warehouse);

assertFalse(order.isFilled());

assertEquals(50, warehouse.getInventory(TALISKER));

}

tested object
“system under test” (SUT)

state verification

Collaborator (wharehouse)

Roel Wuyts
Creative Commons License 4 25

Roel Wuyts – Design of Software Systems

Creative Commons License 4

public class OrderInteractionTester extends MockObjectTestCase {

private static String TALISKER = "Talisker";

public void testFillingRemovesInventoryIfInStock() {

Order order = new Order(TALISKER, 50);

Mock warehouseMock = new Mock(Warehouse.class);

warehouseMock.expects(once()).method("hasInventory")

.with(eq(TALISKER),eq(50))

.will(returnValue(true));

warehouseMock.expects(once()).method("remove")

.with(eq(TALISKER), eq(50))

.after("hasInventory");

order.fill((Warehouse) warehouseMock.proxy());

warehouseMock.verify();

assertTrue(order.isFilled());

}

}

Mocking & Stubbing

Using mocking (jMock library example)

setup - expectations

setup - data

exercise

verify

More info: http://martinfowler.com/articles/mocksArentStubs.html

http://martinfowler.com/articles/mocksArentStubs.html

Roel Wuyts
Creative Commons License 4 26

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactorings

Refactoring

– What is it?

– Why is it necessary?

– Examples

– Tool support

– Obstacles to refactoring

Roel Wuyts
Creative Commons License 4 27

Roel Wuyts – Design of Software Systems

Creative Commons License 4

What is Refactoring?

The process of changing a software system in such a way that it does not
alter the external behaviour of the code, yet improves its internal structure
[Fowl99a]

A behaviour-preserving source-to-source program transformation
[Robe98a]

A change to the system that leaves its behaviour unchanged, but
enhances some non-functional quality - simplicity, flexibility,
understandability, ... [Beck99a]

Roel Wuyts
Creative Commons License 4 28

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Typical Refactorings

Class

Refactorings
Method Refactorings Attribute Refactorings

add (sub)class to

hierarchy
add method to class add variable to class

rename class rename method rename variable

remove class remove method remove variable

push method down push variable down

push method up pull variable up

add parameter to method create accessors

move method to component abstract variable

extract code in new method

Roel Wuyts
Creative Commons License 4 29

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why Refactoring?

“Grow, don’t build software” (Fred Brooks)

“Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.” (Fowler)

Some argue that good design does not lead to code needing refactoring ...

Roel Wuyts
Creative Commons License 4 30

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why Refactoring?

In reality

– Extremely difficult to get the design right the first time

– You cannot fully understand the problem domain

– You cannot fully understand user requirements

– You cannot really plan how the system will evolve

– Original design is often inadequate

– System becomes brittle, difficult to change

Roel Wuyts
Creative Commons License 4 31

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why Refactoring?

Refactoring helps you to

– Manipulate code in a safe environment

• Behaviour preserving

– Recreate a situation where evolution is possible

– Understand existing code

Remember: software needs to be maintained

– This is one way to do it safely

Roel Wuyts
Creative Commons License 4 32

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Examples of Refactoring Analysis

Rename Method

– existence of similar methods

– references of method definitions

– references of calls

AddClass

– simple

– namespace use and static references between class structure

Roel Wuyts
Creative Commons License 4 33

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Rename Method

Roel Wuyts
Creative Commons License 4 34

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Rename Method: Do It Yourself

Check if a method does not exist in the class and superclass/subclasses
with the same “name”

Browse all the implementers (method definitions)

Browse all the senders (method invocations)

Edit and rename all implementers

Edit and rename all senders

Remove all implementers

Test

Roel Wuyts
Creative Commons License 4 35

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Rename Method

Rename Method (method, new name)

Preconditions

– no method exists with the signature implied by new name in the inheritance hierarchy that contains
method

– [Smalltalk] no methods with same signature as method outside the inheritance hierarchy of method

– [Java] method is not a constructor

PostConditions

– method has new name

– relevant methods in the inheritance hierarchy have new name

– invocations of changed method are updated to new name

Other Considerations

– Typed/Dynamically Typed Languages => Scope of the renaming

Roel Wuyts
Creative Commons License 4 36

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Add class

Roel Wuyts
Creative Commons License 4 37

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Add Class

Preconditions

– no class and global variable exists with classname in the same scope

– subclasses are all subclasses of all superclasses

– [Smalltalk] superclasses must contain one class

– [Smalltalk] superclasses and subclasses cannot be metaclasses

Postconditions

– new class is added into the hierarchy with superclasses as superclasses and subclasses as
subclasses

– new class has name classname

– subclasses inherit from new class and not anymore from superclasses

Considerations: Abstractness

Roel Wuyts
Creative Commons License 4 38

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Tool Support

Could do refactoring by hand

– see Rename Method example

But much better if automated

– easier

– safer

Which tools are needed to support refactoring?

Roel Wuyts
Creative Commons License 4 39

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Tool support for refactoring activities

Change Efficiently Failure Proof

Refactoring Tools

- source-to-source program transformation

- behaviour preserving

⇒ Improve Structure

Regression Testing

- Repeating past tests

- requires no user interaction

- is deterministic

⇒ Verify damage to previous work

Development Environment

- Fast edit-compile-run

- Integrated in environment

⇒ Convenient

Configuration&Version Management

- track different versions

- track who did what

⇒ can revert to earlier versions

Roel Wuyts
Creative Commons License 4 40

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring in Eclipse

Roel Wuyts
Creative Commons License 4 41

Roel Wuyts – Design of Software Systems

Creative Commons License 4

When to Refacctor ?

When you add functionality

– Helps you to understand the code you are modifying.

– Sometimes the existing design does not allow you to easily add the feature.

When you need to fix a bug

– If you get a bug report, it’s a sign the code needs refactoring

– because the code was not clear enough for you to see the bug in the first
place

When you do a code review

– Code reviews help spread knowledge through the development team.

– Works best with small review groups

Roel Wuyts
Creative Commons License 4 42

Roel Wuyts – Design of Software Systems

Creative Commons License 4

When to Refactor

You should refactor:

– Any time that you see a better way of doing things

• “Better” means making the code easier to understand and to modify in the future

– You can do so without breaking the code

• Unit tests are essential for this (remember: do not refactor in isolation)

You should NOT refactor:

– Stable code (code that won’t ever need to change, code library)

– Someone else’s code

• Unless you’ve inherited it (and now it’s yours)

Rule of Thumb: ‘Three strikes and you refactor’

– 1st time: Write from scratch

– 2nd time: Duplication eventually admissible

– 3rd time: Refactor !!!

≉ XP practice!

Roel Wuyts
Creative Commons License 4 43

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: Switch Statements

Switch statements are very rare in properly designed object-oriented code

– Therefore, a switch statement is a simple and easily detected “bad smell”

– Of course, not all uses of switch are bad

– A switch statement should NOT be used to distinguish between various
kinds of object

There are several well-defined refactorings for this case

– The simplest is the creation of subclasses

Roel Wuyts
Creative Commons License 4 44

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: Bad Smell

class Animal {

final int MAMMAL = 0, BIRD = 1, REPTILE = 2;

int myKind; // set in constructor

...

String getSkin() {

switch (myKind) {

case MAMMAL: return "hair";

case BIRD: return "feathers";

case REPTILE: return "scales";

default: return "integument";

}

}

}

Roel Wuyts
Creative Commons License 4 45

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: Improved

class Animal {

String getSkin() {

return "integument";

}

}

class Mammal extends Animal {

String getSkin() {

return "hair"; }

}

class Bird extends Animal {

String getSkin() {

return "feathers";

}

}

class Reptile extends Animal {

String getSkin() {

return "scales";

}

}

Roel Wuyts
Creative Commons License 4 46

Roel Wuyts – Design of Software Systems

Creative Commons License 4

JUnit Tests

As we refactor, we need to run (JUnit) tests to ensure that we haven’t
introduced errors

This should work equally well with either implementation

The setUp() method of the test fixture may need to be modified

Re-running unit tests proves that the refactoring succeeded
(= external behavior remained unchanged)

public void testGetSkin() {

assertEquals("hair", myMammal.getSkin());

assertEquals("feathers", myBird.getSkin());

assertEquals("scales", myReptile.getSkin());

assertEquals("integument", myAnimal.getSkin());

}

Roel Wuyts
Creative Commons License 4 47

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Examples

72 Refactorings identified by Fowler

Add Parameter

Change Association

Change Reference to Value

Change Value to Reference

Collapse Hierarchy

Consolidate Conditional

Convert Procedures to Objects

Decompose Conditional

Encapsulate Collection

Encapsulate Downcast

Encapsulate Field

Extract Class

Extract Interface

Extract Method

Extract Subclass

Extract Superclass

Form Template Method

Hide Delegate

Hide Method

Inline Class

Inline Temp

Introduce Assertion

Introduce Explain Variable

Introduce Foreign Method

…

Roel Wuyts
Creative Commons License 4 48

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Collapse Hierarchy

When superclass and subclass are not very different: Merge them

Roel Wuyts
Creative Commons License 4 49

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Consolidate Conditional

When the same fragment of code is in all branches: Move it out

double disabilityAmount()

{

if (_seniority < 2) return 0;

if (_monthsDisabled > 12)

return 0;

if (_isPartTime) return 0;

// compute the disability amount

}

double disabilityAmount()

{

if (isNotEligableForDisability())

return 0;
// compute the disability amount

}

Roel Wuyts
Creative Commons License 4 50

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Decompose Conditional

When having a complicated conditional statement: Extract if/then/else
parts

if (date.before (SUMMER_START) || date.after(SUMMER_END))

charge = quantity * _winterRate + _winterServiceCharge;

else

charge = quantity * _summerRate;

if (notSummer(date))

charge = winterCharge (quantity);

else charge = summerCharge (quantity);

Roel Wuyts
Creative Commons License 4 51

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Encapsulate Collection

When a method returns a collection: Provide Read-only view &
add/remove methods

Roel Wuyts
Creative Commons License 4 52

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Extract Class

When we have 1 class doing the work that should be done by 2:
Create new class, move fields & methods

=> GRASP High Cohesion

Roel Wuyts
Creative Commons License 4 53

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Inline Class

When a class isn't doing very much: Merge with other class

Roel Wuyts
Creative Commons License 4 54

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example: Encapsulate Downcast

When a method returns an object that needs to be downcasted by its
callers:

– Move the downcast to within the method.

– happens often when a class uses a collection or iterator

Object lastReading() {

return readings.lastElement();

}

Reading lastReading =
(Reading) theSite.lastReading();

Reading lastReading() {

return (Reading) readings.lastElement();

}

Reading lastReading = theSite.lastReading();

Roel Wuyts
Creative Commons License 4 55

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Refactoring Example 9: Extract Method

When we have a code fragment that can be grouped together: turn the
fragment into a method with an explanative name

void printOwing()

{

printBanner();

// print details

System.out.println ("name: " + _name);

System.out.println ("amount“ +

getOutstanding());

}

void printOwing() {

printBanner();

printDetails(getOutstanding());
}

Roel Wuyts
Creative Commons License 4 56

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Bad Smells in Code

Duplicated Code

Long Method

Large Class

Long Parameter List

Divergent Change

Shotgun Surgery

Feature Envy

Data Clumps

Primitive Obsession

Switch Statements

Comments

Parallel Inheritance/Interface Hierarchies

Lazy Class

Speculative Generality

Temporary Field

Message Chains

Middle Man

Inappropriate Intimacy

Incomplete Library Class

Data Class

Refused Bequest

Alternative Classes with Different Interfaces

Roel Wuyts
Creative Commons License 4 57

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Bad Smells

Where did this term come from?

“If it stinks, change it.”
--Grandma Beck

The basic idea is that there are things in code that cause problems

– Duplicated code, Long methods, …

But any time you change working code, you run the risk of breaking it

– A good test suite makes refactoring much easier and safer

Bad smells gives inspiration, but are not designed as metrics

– You have to decide yourself when something is “too much”, …

Roel Wuyts
Creative Commons License 4 58

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: Duplicated Code

If you see the same code structure in more than one place, find a way to
unify them

“Number one in the stink parade” !!!

The usual solution is to perform

– ExtractMethod: create a single method from the duplicated code

– Invoke from all places: Use it wherever needed

– You sometimes need additional refactorings (Add Parameter, …)

This adds the overhead of method calls, thus the code could get a bit
slower

Roel Wuyts
Creative Commons License 4 59

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Other Bad Smells

Long Method

– The longer a procedure is, the more difficult it is to understand.

– Solution: perform EXTRACT METHOD or Decompose Conditional or Replace Temp with

Query.

Large class

– When a class is trying to do too much, it often shows up as too many instance variables.

– Solution: perform EXTRACT CLASS or EXTRACT SUBCLASS

Feature Envy

– A method that seems more interested in a class other than the one it is in.

– Solution: perform MOVE METHOD or EXTRACT METHOD on the jealous bit and get it home.

Roel Wuyts
Creative Commons License 4 60

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Other Bad Smells

Shotgun Surgery

– This situation occurs when every time you make a kind of change, you have to make a lot

of little changes to a lot of different classes.

– Solution: perform MOVE METHOD/FIELD or INLINE CLASS bring a whole bunch of behavior

together.

Long Parameter List

– In OO, you don't need to pass in everything the method needs.

Instead, you pass enough so the method can get to everything it needs

– Solution: Use REPLACE PARAMETER WITH METHOD when you can get the data in one

parameter by making a request of an object you already know about.

Roel Wuyts
Creative Commons License 4 61

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Bad Smell/Sweet Smell: Comments

Fowler says “comments often are used as a deodorant”

– If you need a comment to explain what a block of code does, use Extract
Method

– If you need a comment to explain what a method does, use Rename
Method

– If you need to describe the required state of the system, use Introduce
Assertion

When you feel the need to write a comment, first try to refactor the code
so that any comment becomes superfluous

The point is that code should be self-explanatory, so that comments are
not necessary.

A comment is a good place to say why you did something

Roel Wuyts
Creative Commons License 4 62

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Java FindBugs

Roel Wuyts
Creative Commons License 4 63

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Obstacles to Refactoring

Performance issue

– “Refactoring will slow down the execution”

Cultural Issues

– “We pay you to add new features, not to improve the code!”

If it doesn’t break, do not fix it

– “We do not have a problem, this is our software!“

Development is always under time pressure

– Refactoring takes time

– Refactoring better after delivery

– Process should take it into account, like testing

Roel Wuyts
Creative Commons License 4 64

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Conclusion

Refactoring is just a way of rearranging code

– Refactorings are used to solve problems

– If there’s no problem, you shouldn’t refactor

The notion of “bad smells” is a way of helping us recognize when we have
a problem

– Familiarity with bad smells helps us avoid them in the first place

Refactorings are mostly pretty obvious

– Most of the value in discussing them is just to bring them into our
“conscious toolbox”

– Refactorings have names in order to crystalize the idea and help us
remember it

Roel Wuyts
Creative Commons License 4 65

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Profiling

What and how

Roel Wuyts
Creative Commons License 4 66

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Performance Myth

Don’t think that clean software is slow!

Normally only 10% of your system consumes 90% of the resources so just
focus on 10 %.

– Refactorings help to localise the part that need change

– Refactorings help to concentrate the optimisations

Always use a profiler on your “slow” system to guide your optimisation
effort

– Never optimise first!

Roel Wuyts
Creative Commons License 4 67

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Profiling

“Measure the behaviour of a program as it runs”

Note: can profile different things

– execution speed

– memory usage

– ...

Roel Wuyts
Creative Commons License 4 68

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Profiling concepts

How does it work?

– Sampling: gather information from time to time

• Less accurate

• Less performance overhead

– Code instrumentation: modify program to analyze itself

• Full instrumentation is very exact

• Slower

• Risc for Heisenbugs

• Can be manual, static, dynamic, ...

Roel Wuyts
Creative Commons License 4 69

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Profiler Tools

Can be integrated in Development Environment

– linked with code: can highlight slow methods, …

– make profile data understandable and usable

Can be stand-alone

– no need to get project in IDE just to profile

Roel Wuyts
Creative Commons License 4 70

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: Java Profiling in Eclipse

Java profiling can be installed in Eclipse

– Does Memory and Execution Time profiling

• local or remote

Roel Wuyts
Creative Commons License 4 71

Roel Wuyts – Design of Software Systems

Creative Commons License 4

We have a Java project to profile...

Roel Wuyts
Creative Commons License 4 72

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Profile the main function

Roel Wuyts
Creative Commons License 4 73

Roel Wuyts – Design of Software Systems

Creative Commons License 4

View results in Profiling perspective

Roel Wuyts
Creative Commons License 4 74

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: VisualVM (http://visualvm.java.net/)

monitor and/or sample CPU time and memory

Easy to use, stand-alone

See video

Roel Wuyts
Creative Commons License 4 75

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Other useful tools exist for profiling...

“Scalasca” : spot communication&synchronization imbalances in MPI
programs (http://scalasca.org)

Roel Wuyts
Creative Commons License 4 76

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Other useful tools exist for profiling...

“Sniper” : fast hardware simulator for detailed analysis
(http://snipersim.org)

Roel Wuyts
Creative Commons License 4 77

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Sometimes you have to roll your own

See video on course site

profile load balancing efficacy per core over time

Roel Wuyts
Creative Commons License 4 78

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Conclusion

Make it Work, Make it Right, Make it Fast

Unit testing remove fear of making changes

Refactoring remove fear of making changes

Profiling tells you where to make performance-related changes

– focus your effort

Roel Wuyts
Creative Commons License 4 79

Roel Wuyts – Design of Software Systems

Creative Commons License 4

License: Creative Commons 4.0 http://creativecommons.org/licenses/by-sa/4.0/

