
Design of Software Systems
(Ontwerp van SoftwareSystemen)

Roel Wuyts

2015-2016

5 Software Development Processes



Roel Wuyts
Creative Commons License 4 2

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Software Process

Set of activities that leads to the production of a software product

– lots of processes exist

– share some fundamental activities



Roel Wuyts
Creative Commons License 4 3

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Development Phases

Testing Validate the solution against the 

requirements

Analysis Model and specify the requirements 

(“what”)

Maintenance Repair defects and adapt the solution to 

new requirements

Implementation Construct a solution in software

Requirements 

Collection

Establish customer’s needs

Design Model and specify a solution (“how”)



Roel Wuyts
Creative Commons License 4 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Software Development Process

A software development methodology is

• a set of partially ordered steps 

• to build, deploy, maintain, … software

Examples:

• Waterfall

• Spiral

• XP (eXtreme Programming)

• UP (Unified Process)

– RUP (Rational Unified Process)

– Agile UP



Roel Wuyts
Creative Commons License 4 5

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Lightweight vs. Heavyweight Processes

Document driven

Elaborate workflow definitions

Many different roles

Many checkpoints

High management overhead

Highly bureaucratic

Focus on 

• indiv./interactions rather than process/tools

• working SW rather than documentation

• customer collaboration rather than contract

• responding to change rather than the plan

Heavyweight

e.g., Waterfall 

model,

V-Process

Customizable

Framework

e.g., Rational

Unified

Process (RUP)

Agile (Lightweight)

e.g., eXtreme

Programming (XP), 

SCRUM



Roel Wuyts
Creative Commons License 4 6

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Lightweight vs. Heavyweight Processes

Document driven

Elaborate workflow definitions

Many different roles

Many checkpoints

High management overhead

Highly bureaucratic

Focus on 

• indiv./interactions rather than process/tools

• working SW rather than documentation

• customer collaboration rather than contract

• responding to change rather than the plan

Heavyweight

e.g., Waterfall 

model,

V-Process

Customizable

Framework

e.g., Rational

Unified

Process (RUP)

Agile (Lightweight)

e.g., eXtreme

Programming (XP), 

SCRUM



Roel Wuyts
Creative Commons License 4 7

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Waterfall Model

Characterized by

– Sequential steps (phases)

– Feedback loops (between two phases in development)

– Documentation-driven

Advantages 

– Documentation

– Maintenance easier 

Disadvantages

– Complete and frozen specification document up-front 

often not feasible in practice

– Customer involvement in the first phase only

– Sequential and complete execution of phases often not desirable

– Process difficult to control

– The product becomes available very late in the process



Roel Wuyts
Creative Commons License 4 8

Roel Wuyts – Design of Software Systems

Creative Commons License 4

V-Model

Like the Waterfall model, it is 
a linear model that is very 
rigid

– Requirements are expected 
not to change

– Due to the V-shape, the 
first tests are the 
implementation tests 

Unlike the waterfall model, 
every integration is tested



Roel Wuyts
Creative Commons License 4 9

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Lightweight vs. Heavyweight Processes

Document driven

Elaborate workflow definitions

Many different roles

Many checkpoints

High management overhead

Highly bureaucratic

Focus on 

• indiv./interactions rather than process/tools

• working SW rather than documentation

• customer collaboration rather than contract

• responding to change rather than the plan

Heavyweight

e.g., Waterfall 

model,

V-Process

Customizable

Framework

e.g.,

Unified

Process (UP)

Agile (Lightweight)

e.g., eXtreme

Programming (XP), 

SCRUM



Roel Wuyts
Creative Commons License 4 10

Roel Wuyts – Design of Software Systems

Creative Commons License 4

UP: Iterative and Incremental development

iterative & incremental development : embracing change

– Essential for SW Development

(“No Silver Bullet”, Brooks, 1987)

iterative models: can be iterative w.r.t. value and/or requirements



Roel Wuyts
Creative Commons License 4 11

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Iterative Development (a.k.a. incremental models)

More functionality with each release (new increment)

– Operational quality portion of product within weeks

Non-incremental models (e.g. Waterfall)

– Operational quality complete product at end

DeploymentTestCodingDesign

DeploymentTestCodingDesign

DeploymentTestCodingDesign

R
e
q
u
ire

m
e
n
ts

Release 1

Release 2

Release 3



Roel Wuyts
Creative Commons License 4 12

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Incremental development (a.k.a. Evolutionary Models)

New versions implement new and evolving requirements

Version 1

Version 2

Version 3

Requirements Design Coding Test Deployment

Requirements Design Coding Test Deployment

Requirements Design Coding Test Deployment

feedback



Roel Wuyts
Creative Commons License 4 13

Roel Wuyts – Design of Software Systems

Creative Commons License 4

UP is Use-Case-Driven

Use cases are concise, simple, and understandable by a wide range of 
stakeholders

– End users, developers and acquirers understand functional requirements of 
the system

Use cases drive numerous activities in the process:

– Creation and validation of the design model

– Definition of test cases and procedures of the test model

– Planning of iterations

– Creation of user documentation

– System deployment

Use cases help synchronize the content of different models



Roel Wuyts
Creative Commons License 4 14

Roel Wuyts – Design of Software Systems

Creative Commons License 4

UP’s 4 Project Life Cycle Phases

Inception

– Approximate vision

– Business case

– Scope

– Vague estimates

– Continue or stop?

Elaboration

– Identification of most requirements

– Iterative implementation of the 
core architecture

– resolution of high risks

TransitionConstructionElaborationinception

time



Roel Wuyts
Creative Commons License 4 15

Roel Wuyts – Design of Software Systems

Creative Commons License 4

UP’s 4 Project Life Cycle Phases (ctd)

Construction

– Iterative implementation of lower 
risk elements

– Preparation for deployment

Transition

– Beta tests

– Deployment

TransitionConstructionElaborationinception

time



Roel Wuyts
Creative Commons License 4 16

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Iterations and Milestones

Each phase concludes with a well-defined milestone.

Preliminary
Iteration

Iter. #1 Iter. #2

Inception Elaboration Construction Transition

Milestone Release Final production

release



Roel Wuyts
Creative Commons License 4 17

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Iterations and Milestones

Phases consist of one or more iterations

– short fixed-length mini-projects (2 to 6 weeks)

– shift tasks to future iterations if necessary ...

– an iteration represents a complete development cycle

– the end of each iteration is a minor release, a stable, integrated executable 
subset of the final product

Preliminary
Iteration

Iter. #1 Iter. #2

Inception Elaboration Construction Transition

Milestone Release Final production

release



Roel Wuyts
Creative Commons License 4 18

Roel Wuyts – Design of Software Systems

Creative Commons License 4

The UP Disciplines

Project Management

Environment

Business Modeling

Implementation

Test

Analysis & Design

Preliminary 
Iteration(s)

Iter.
#1

Phases

Process Disciplines

Iterations

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration & Change Mgmt

Requirements

Elaboration TransitionInceptio
n

Construction

Supporting Disciplines

Focus of this

course.



Roel Wuyts
Creative Commons License 4 19

Roel Wuyts – Design of Software Systems

Creative Commons License 4

UP

Advantages

– Incremental & Iterative

– Sits in between heavyweight and agile processes

• best of both worlds ?

– Customizable

Potential pitfalls

– Use Cases do not model all requirements

– Hard to make really lightweight, even when customized

• Quite some documentation and process remains



Roel Wuyts
Creative Commons License 4 20

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Lightweight vs. Heavyweight Processes

Document driven

Elaborate workflow definitions

Many different roles

Many checkpoints

High management overhead

Highly bureaucratic

Focus on 

• indiv./interactions rather than process/tools

• working SW rather than documentation

• customer collaboration rather than contract

• responding to change rather than the plan

Heavyweight

e.g., Waterfall 

model,

V-Process

Customizable

Framework

e.g., Rational

Unified

Process (RUP)

Agile (Lightweight)

e.g., eXtreme

Programming (XP), 

SCRUM



Roel Wuyts
Creative Commons License 4 21

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Agile Development

Group of iterative and incremental software methodologies 



Roel Wuyts
Creative Commons License 4 22

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Extreme Programming (XP)

Point of XP: coping with change and uncertainty

Based on number of practices:

– small, frequent releases of the system

– full-time engagement of customer

– pair programming, collective ownership of the code, sustainable 
development

– regular system releases, test-first development, continuous integration

– constant refactoring, simplest thing that can work



Roel Wuyts
Creative Commons License 4 23

Roel Wuyts – Design of Software Systems

Creative Commons License 4

The XP Release Cycle

Select user stories 

for this release

Break down stories 

to tasks
Plan release

Develop/integrate/tes

t software
Release softwareEvaluate system

Source: Sommerville: Software Engineering, 8th edition, 2007



Roel Wuyts
Creative Commons License 4 24

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Driving Metaphor

Driving a car is not about pointing the car in one direction and holding to 
it; driving is about making lots of little course corrections.

“Do the simplest thing that could possibly work”



Roel Wuyts
Creative Commons License 4 25

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Customer-Developer Relationships

A well-known experience: The customer and the developer sit in a boat in 
the ocean and are afraid of each other

Result: a lot of energy goes into protective measures and politics instead 
of success

Customer fears Developer fears

They won't get what they asked for They won't be given clear definitions of what needs 

to be done

They must surrender the control of their careers 

to techies who don't care

They will be given responsibility without authority

They'll pay too much for too little They will be told to do things that don't make sense

They won't know what is going on (the plans they 

see will be fairy tales)

They'll have to sacrifice quality for deadlines



Roel Wuyts
Creative Commons License 4 26

Roel Wuyts – Design of Software Systems

Creative Commons License 4

The Customer Bill of Rights

You have the right to an overall plan
To steer a project, you need to know what can be 

accomplished within time and budget

You have the right to get the most possible value out of 
every programming week

The most valuable things are worked on first.

You have the right to see progress in a running system.
Only a running system can give exact information about 

project state

You have the right to change your mind, to substitute 
functionality and to change priorities without exorbitant 

costs.

Market and business requirements change. We have to 
allow change.

You have the right to be informed about schedule 
changes, in time to choose how to reduce the scope to 

restore the original date.

XP works to be sure everyone knows just what is really 
happening.



Roel Wuyts
Creative Commons License 4 27

Roel Wuyts – Design of Software Systems

Creative Commons License 4

The Developer Bill of Rights

You have the right to know what is needed, with clear 
declarations of priority.

Tight communication with the customer. Customer 
directs by value. 

You have the right to produce quality work all the time.
Unit Tests and Refactoring help to keep the code 
clean

You have the right to ask for and receive help from peers, 
managers, and customers

No one can ever refuse help to a team member

You have the right to make and update your own estimates.
Programmers know best how long it is going to take 
them

You have the right to accept your responsibilities instead 
having them assigned to you

We work most effectively when we have accepted 
our responsibilities instead of having them thrust 
upon us



Roel Wuyts
Creative Commons License 4 28

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Separation of Roles

Customer makes business decisions

Developers make technical decisions

The Customer owns “what you get” while the Developers own “what it 
costs”. 

Business Decisions Technical Decisions 

Scope Estimates

Dates of the releases Dates within an iteration

Priority Team velocity

Warnings about technical risks



Roel Wuyts
Creative Commons License 4 29

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Describing XP

Values Practices

Principles



Roel Wuyts
Creative Commons License 4 30

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Basic XP Values

Communication

– communicate problems&solutions, teamwork

Simplicity

– eliminate wasted complexity

Feedback

– change creates the need for feedback

Courage

– effective action in the face of fear

Respect

– care about you, the team, and the project



Roel Wuyts
Creative Commons License 4 31

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Principles

Humanity, Economics, Mutual Benefit, Self-Similarity, Improvement, 
Diversity, Reflection, Flow, Opportunity, Redudancy, Failure, Quality, Baby 
Steps, Accepted Responsibility

Will not detail them -- they govern what the practices tend to accomplish

So, on to the practices!



Roel Wuyts
Creative Commons License 4 32

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Primary Practices

Sit Together

Whole Team

Informative Workspace

Energized Work

Pair Programming

Stories

Weekly Cycle

Quarterly Cycle

Slack

Ten Minute Build

Continuous Integration

Test-First Programming

Incremental Design



Roel Wuyts
Creative Commons License 4 33

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Stories

plan using units of customer-visible functionality

Save with compression

Currently the compression options are 

in a dialog subsequent to the save 

dialog. Make them part of the save 

dialog itself

8 hrs

name

short description

estimate

index card



Roel Wuyts
Creative Commons License 4 34

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Another example



Roel Wuyts
Creative Commons License 4 35

Roel Wuyts – Design of Software Systems

Creative Commons License 4

7 more User Stories

Students can purchase monthly parking passes online.

Parking passes can be paid via credit cards.

Parking passes can be paid via PayPal ™.

Professors can input student marks.

Students can obtain their current seminar schedule.

Students can only enroll in seminars for which they have prerequisites.

Transcripts will be available online via a standard browser.



Roel Wuyts
Creative Commons License 4 36

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Sit Together

Develop in an open space big enough for the team



Roel Wuyts
Creative Commons License 4 37

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Informative Workspace

Workspace = about your work

– 15 seconds to convey how project is going

– shows important, active information

– drinks & snacks available, and clean

done this week this release

futureto be estimated



Roel Wuyts
Creative Commons License 4 38

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Pair Programming

Write all production programs with two people sitting at one machine

– make enough room, move keyboard and mouse

Pair programmers:

– keep each other on task

– brainstorm refinements to the system

– clarify ideas

– take initiative when partner is stuck (less frustration)

– hold each other accountable to practices



Roel Wuyts
Creative Commons License 4 39

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Pair programming and privacy

Sometimes you might need some privacy

– then go work alone

– come back with the idea (NOT the code)

• quickly reimplemented with two

• benefits the whole team, not you alone



Roel Wuyts
Creative Commons License 4 40

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Pair Programming

Rotate pairs frequently

– every couple of hours, at natural breaks in development

– with a timer, every 60 minutes (or 30 minutes for difficult problems)



Roel Wuyts
Creative Commons License 4 41

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Pair Programming and Personal Space

Not everybody likes to sit close!

Observe personal hygiene and health

Sexual feelings are not in best interest of the team

– even when mutual

When uncomfortable pairing with somebody, talk about it with someone 
safe

– chances are that you are not the only one

– everybody needs to feel comfortable



Roel Wuyts
Creative Commons License 4 42

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Weekly Cycle

Plan work one week at a time.

Do this on a meeting at the begin of each week

– Review progress.

– Let customers pick a week’s worth of stories to implement this week.

– Break the stories into tasks. Team members sign up for tasks and estimate 
them.

Start writing tests that will run when the stories are completed



Roel Wuyts
Creative Commons License 4 43

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Ten-Minute Build

Automatically build the whole system and run all of the tests in ten 
minutes

– longer: will not be used (and errors result)

– shorter: not enough time to drink coffee

Note: if it takes longer than 10 minutes:

– maybe only rebuild changed part or test changes

– But: introduces errors. Only do this when necessary

Lowers stress: “Did we make a mistake? Let’s see.”



Roel Wuyts
Creative Commons License 4 44

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Continuous Integration

Team Programming = Divide, Conquer, Integrate

Integrate and test changes after no more than a couple of hours

– integration typically takes long

– when done at the end, risks the whole project when integration problems 
are discovered

– the longer you wait, the more it costs and the more unpredictable it 
becomes



Roel Wuyts
Creative Commons License 4 45

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Using Continuous Integration

Synchronous

– After a task is finished, you integrate and run the tests

– Immediate feedback for you and your partner

Asynchronous

– After submitting changes, the build system notices something new, builds 
and tests the system, and gives feedback by mail, notification, etc.

– Feedback typically comes when a new task is started

– Pair programmers might have been switched already



Roel Wuyts
Creative Commons License 4 46

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Test-first Programming

Write a failing automated test before changing code

Addresses many problems:

– Scope creep: focus coding by what the code should do, not on the “just in 
case” code

– Coupling and cohesion: If it’s hard to write a test, there is a design problem 
(not a testing problem)

– Trust: clean working code + automated tests

– Rhythm: gives focus on what to do next

• efficient rhythm: test, code, refactor, test, ...



Roel Wuyts
Creative Commons License 4 47

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Incremental Design

Invest in the design of the system every day. Strive to the design of the 
system an excellent fit for the needs of the system that day

– Completely opposite to lots of other practices

• Waterfall and similar approaches

Can work with XP because of the other practices

– Automated tests, continuous integration, ...

Note: you need to invest in design!

– not just implement story after story after story...



Roel Wuyts
Creative Commons License 4 48

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Corollary Practices

Real Customer Involvement

Incremental Deployment

Team Continuity

Shrinking teams

Root-Cause Analysis

Shared Code

Code and Tests

Single Code Base

Daily Deployment

Negotiated Scope Contract

Pay-Per-Use



Roel Wuyts
Creative Commons License 4 49

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Stages in XP Project

Initiation 

– User Stories 

Release Planning 

Release (each Release is typically 1 -6 months) 

– Iteration 1 (typically 1 -3 weeks) 

– Iteration 2

– : 

– Iteration n 



Roel Wuyts
Creative Commons License 4 50

Roel Wuyts – Design of Software Systems

Creative Commons License 4

XP

Advantages

– works well for small teams

– low process overhead, lean & mean

Potential pitfalls

– no documented compromises of user conflicts

– lack of an overall design specification or document

– can be hard to fit in organizations/workflows



Roel Wuyts
Creative Commons License 4 51

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Conclusion

A software development methodology is

• a set of partially ordered steps 

• to build, deploy, maintain, … software

Many methodologies exist

– each with trade-offs

– pick the one according to your needs

• project size

• project partners

• development team(s)

• outside constraints (legislation, domain constraints, ...)



Roel Wuyts
Creative Commons License 4 52

Roel Wuyts – Design of Software Systems

Creative Commons License 4

References

Craig Larman, Applying UML and Patterns – An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd ed.), 
Prentice Hall, 2005.

Kent Beck, Extreme Programming Explained: Embrace Change (2nd ed.), 
2004.

http://c2.com/cgi/wiki?ExtremeProgramming

http://c2.com/cgi/wiki?ExtremeProgramming


Roel Wuyts
Creative Commons License 4 53

Roel Wuyts – Design of Software Systems

Creative Commons License 4

License: Creative Commons 4.0 http://creativecommons.org/licenses/by-sa/4.0/


