
Design of Software Systems
(Ontwerp van SoftwareSystemen)

Roel Wuyts

2015-2016

3 Design Patterns

Roel Wuyts
Creative Commons License 4 2

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Warm-up Exercise

We need a design to be able to print different kinds of text (ASCII and
PostScript) on different kinds of printers (ASCIIPrinter and PSPrinter).

ASCIIPrinters can only print ASCII text,
but PostscriptPrinters can print Postscript text as well as ASCIIText, after
internally converting ASCIIText to Postscript text.

New types of printers and texts will be added in the near future.

Roel Wuyts
Creative Commons License 4 3

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Alexander’s patterns

“Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem,
in such a way that you can use this solution a million times over, without
doing it the same way twice”

– Alexander uses this as part of the solution to capture the “quality without a
name”

Roel Wuyts
Creative Commons License 4 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Illustrating Recurring Patterns...

Osio (China)

Zurich (Switzerland)

Singapore (Thailand)

Beijing (China)

Brussels (Belgium)

Roel Wuyts
Creative Commons License 4 5

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Alert!

Do not overreact seeing all these patterns!

Do not apply too many patterns!

Look at the trade-offs!

Most patterns makes systems more complex!

– but address a certain need.

As always: do good modeling.

– First start your design and note problems or difficulties,

– then propose multiple potential solutions with different trade-offs,

• potentially using patterns,

– then take motivated decision

Roel Wuyts
Creative Commons License 4 6

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Design Patterns

A Design Pattern is a pattern that captures a solution to a recurring design
problem

– It is not a pattern for implementation problems

– It is not a ready-made solution that has to be applied

• It’s still up to you !

• You can simply use the pattern for inspiration,

• Or only apply part of the design pattern

• Remember the basic OO design principles and use them to weigh your design

Roel Wuyts
Creative Commons License 4 7

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Adapt to suit taste, allergies, nr. of people, available ingredients, …

Roel Wuyts
Creative Commons License 4 8

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Design Patterns

Example:

– “We are implementing a drawing application. The application allows the user
to draw several kinds of figures (circles, squares, lines, polymorphs, bezier
splines). It also allows to group these figures (and ungroup them later).
Groups can then be moved around and are treated like any other figure.”

Look at Composite Design Pattern

Roel Wuyts
Creative Commons License 4 9

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Pattern structure

A design pattern is a kind of blueprint

Consists of different parts

– All of these parts make up the pattern!

– When we talk about the pattern we therefore mean all of these parts
together

• not only the class diagram...

Tip: remember this for the exam – know your complete pattern

Roel Wuyts
Creative Commons License 4 10

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Why Patterns?

Smart

– Elegant solutions that a novice would not think of

Generic

– Independent on specific system type, language

• Although biased towards statically-typed class-based OO languages (C++, Java, …)

Well-proven

– Successfully tested in several systems

Simple

– Combine them for more complex solutions

Roel Wuyts
Creative Commons License 4 11

Roel Wuyts – Design of Software Systems

Creative Commons License 4

GoF Design Pattern Book

Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995

– Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (Gang-of-Four
(GoF))

Book is still very relevant today but (depending on edition):

– Original book uses OMT notation (analogous to UML)

– illustrations are in C++

• Principles valid across OO languages!

• Versions of book exists with illustrations in Java, …

Roel Wuyts
Creative Commons License 4 12

Roel Wuyts – Design of Software Systems

Creative Commons License 4

GoF Design Pattern Book

23 Design Patterns

Classification

– according to purpose

– according to problems they solve (p. 24-25)

– according to degrees of freedom (table 1.2, p. 30)

Goal is to make it easy to find a pattern for your problem

Roel Wuyts
Creative Commons License 4 13

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Design Pattern Relationships

Roel Wuyts
Creative Commons License 4 14

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Visitor

Roel Wuyts
Creative Commons License 4 15

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Visitor

Category

– Behavioral

Intent

– Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates.

Motivation

Roel Wuyts
Creative Commons License 4 16

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Motivation (cont)

Roel Wuyts
Creative Commons License 4 17

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applicability

An object structure contains many classes of objects with differing
interfaces and you want to perform operations on these objects that
depend on their concrete classes.

Many distinct and unrelated operations need to be performed on objects in
an object structure an you want to avoid “polluting” their classes with
these operations.

The classes defining the object structure rarely change but you often want
to define new operations over the structure.

Roel Wuyts
Creative Commons License 4 18

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Structure

Roel Wuyts
Creative Commons License 4 19

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Sequence

Cfr. Double Dispatch - this is key to this pattern in order to link concrete elements and concrete visitors !

Roel Wuyts
Creative Commons License 4 20

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants

Visitor

– Declares a Visit operation for each class of ConcreteElement in the object
structure.

– The operations name and signature identifies the class that sends the Visit
request.

ConcreteVisitor

– Implements each operation declared by Visitor.

– Each operation implements a fragment of the algorithm for the
corresponding class of object in the object structure.

– Provides the context for the algorithm and stores its state (often
accumulating results during traversal).

…

Roel Wuyts
Creative Commons License 4 21

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants (cont)

Element

– Defines an accept operation that takes a Visitor as an argument.

ConcreteElement

– Implements an accept operation that takes a visitor as an argument.

ObjectStructure

– Can enumerate its elements.

– May provide a high-level interface to allow the visitor to visit its elements.

– May either be a Composite or a collection such as a list or set.

Roel Wuyts
Creative Commons License 4 22

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Collaborations

A client that uses the visitor pattern must create a ConcreteVisitor object
and then traverse the object structure visiting each element with the
Visitor.

When an element is visited, it calls the Visitor operation that corresponds
to its class. The element supplies itself as an argument to this operation.

Roel Wuyts
Creative Commons License 4 23

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

Makes adding new operations easy.

– a new operation is defined by adding a new visitor (in contrast, when you
spread functionality over many classes each class must be changed to
define the new operation).

Gathers related operations and separates unrelated ones.

– related behavior is localised in the visitor and not spread over the classes
defining the object structure.

Roel Wuyts
Creative Commons License 4 24

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences (cont)

Adding new ConcreteElement classes is hard.

– each new ConcreteElement gives rise to a new abstract operation in Visitor
and a corresponding implementation in each ConcreteVisitor.

Allows visiting across class hierarchies.

– an iterator can also visit the elements of an object structure as it traverses
them and calls operations on them but all elements of the object structure
then need to have a common parent. Visitor does not have this restriction.

Roel Wuyts
Creative Commons License 4 25

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences (cont)

Accumulating state

– Visitor can accumulate state as it proceeds with the traversal. Without a
visitor this state must be passed as an extra parameter of handled in global
variables.

Breaking encapsulation

– Visitor’s approach assumes that the ConcreteElement interface is powerful
enough to allow the visitors to do their job. As a result the pattern ofthen
forces to provide public operations that access an element’s internal state
which may compromise its encapsulation.

Roel Wuyts
Creative Commons License 4 26

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Known Uses

In the Smalltalk-80 compiler.

In 3D-graphics: when three-dimensional scenes are represented as a
hierarchy of nodes, the Visitor pattern can be used to perform different
actions on those nodes.

Roel Wuyts
Creative Commons License 4 27

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Visitor Pattern

So, we’ve covered the visitor pattern as found in the book

– Are we done?

Roel Wuyts
Creative Commons License 4 28

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Decisions, decisions …

visit(OperationA a)

visit(OperationB b)

vs

visitOperationA(OperationA a)

visitOperationB(OperationB b)

Roel Wuyts
Creative Commons License 4 29

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Short Feature...

Roel Wuyts
Creative Commons License 4 30

Roel Wuyts – Design of Software Systems

Creative Commons License 4

What is the result of the following expression?

class A {

public void m(A a) { System.out.println("1"); }

}

class B extends A {

public void m(B b) { System.out.println("2"); }

public void m(A a) { System.out.println("3"); }

}

B b = new B();

A a = b;

a.m(b);

Roel Wuyts
Creative Commons License 4 31

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Main Feature...

Roel Wuyts
Creative Commons License 4 32

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Visiting all Elements in the CDT Parsetree

public abstract class ASTVisitor {

public int visit(IASTTranslationUnit tu) { return PROCESS_CONTINUE; }

public int visit(IASTName name) { return PROCESS_CONTINUE; }

public int visit(IASTDeclaration declaration) { return PROCESS_CONTINUE; }

public int visit(IASTInitializer initializer) { return PROCESS_CONTINUE; }

public int visit(IASTParameterDeclaration parameterDeclaration) { return PROCESS_CONTINUE; }

public int visit(IASTDeclarator declarator) { return PROCESS_CONTINUE; }

public int visit(IASTDeclSpecifier declSpec) { return PROCESS_CONTINUE; }

public int visit(IASTExpression expression) { return PROCESS_CONTINUE; }

public int visit(IASTStatement statement) { return PROCESS_CONTINUE; }

public int visit(IASTTypeId typeId) { return PROCESS_CONTINUE; }

public int visit(IASTEnumerator enumerator) { return PROCESS_CONTINUE; }

public int visit(IASTProblem problem) { return PROCESS_CONTINUE; }

}

Roel Wuyts
Creative Commons License 4 33

Roel Wuyts – Design of Software Systems

Creative Commons License 4

To Arms! The Short Feature is Attacking the Main Feature

Roel Wuyts
Creative Commons License 4 34

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Advanced Visitor Discussions

When looking more closely at the visitor and its implementation, we can
discuss a number of things in more detail:

– Who controls the traversal?

– What is the granularity of the visit methods?

– Does there have to be a one-on-one correspondence between Element
classes and visit methods ?

– …

Roel Wuyts
Creative Commons License 4 35

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Composite

Roel Wuyts
Creative Commons License 4 36

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Composite

Category

– Structural

Intent

– Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly.

Motivation

Roel Wuyts
Creative Commons License 4 37

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Motivation (cont)

Roel Wuyts
Creative Commons License 4 38

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applicability

Use the Composite Pattern when:

– you want to represent part-whole hierarchies of objects.

– you want clients to be able to ignore the difference between compositions of
objects and individual objects. Clients will treat all objects in the composite
structure uniformly.

Roel Wuyts
Creative Commons License 4 39

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Structure

Roel Wuyts
Creative Commons License 4 40

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants

Component

– Declares the interface for objects in the composition.

– Implements default behaviour for the interface common to all classes, as
appropriate.

– Declares an interface for accessing and managing its child components.

Leaf

– Represents leaf objects in the composition. A leaf has no children.

– Defines behaviour for primitive objects in the composition.

Roel Wuyts
Creative Commons License 4 41

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants (cont)

Composite

– defines behaviour for components having children.

– stores child components.

– implements child-related operations in the Component interface.

Client

– manipulates objects in the composition through the Component interface.

Roel Wuyts
Creative Commons License 4 42

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Collaborations

Clients use the Component class interface to interact with objects in the
composite structure. Leaves handle the requests directly. Composites
forward requests to its child components.

Roel Wuyts
Creative Commons License 4 43

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

Defines class hierarchies consisting of primitive and composite objects.

Makes the client simple. Composite and primitive objects are treated
uniformly (no cases).

Eases the creation of new kinds of components.

Can make your design overly general.

Roel Wuyts
Creative Commons License 4 44

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Known Uses

Can be found in almost all object oriented systems.

The original View class in Smalltalk Model / View / Controller was a
composite.

Roel Wuyts
Creative Commons License 4 45

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Questions

How does the Composite pattern help to consolidate system-wide
conditional logic?

Would you use the composite pattern if you did not have a part-whole
hierarchy? In other words, if only a few objects have children and almost
everything else in your collection is a leaf (a leaf that has no children),
would you still use the composite pattern to model these objects?

Roel Wuyts
Creative Commons License 4 46

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Patterns Catalogue

– Command

– Decorator

– Strategy

– Factory Method

– Abstract Factory

– Singleton

– Proxy

– Adapter

– Observer

– Chain of Responsibility

– FlyWeight

– Facade

Roel Wuyts
Creative Commons License 4 47

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Wrap-up

Architectures

"can't be made, but only generated, indirectly, by the ordinary actions of
the people, just as a flower cannot be made, but only generated from the
seed." (Alexander)

– patterns describe such building blocks

– applying them implicitly changes the overall structure (architecture)

– whether it is on classes, components, or people

Roel Wuyts
Creative Commons License 4 48

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Conclusion

Can you answer this?

– How does Strategy improve coupling and cohesion?

– Does Abstract Factory says the same than the Creator GRASP Pattern?

– Can you give examples of patterns that can be used together ?

– When does it make sense to combine the Iterator and the Composite
Pattern ?

Roel Wuyts
Creative Commons License 4 49

Roel Wuyts – Design of Software Systems

Creative Commons License 4

License: Creative Commons 4.0 http://creativecommons.org/licenses/by-sa/4.0/

