Design of Software Systems
(Ontwerp van SoftwareSystemen)

3 Design Patterns

Roel Wuyts
2015-2016

Warm-up Exercise

We need a design to be able to print different kinds of text (ASCII and
PostScript) on different kinds of printers (ASCIIPrinter and PSPrinter).

ASCIIPrinters can only print ASCII text,

but PostscriptPrinters can print Postscript text as well as ASCIIText, after
internally converting ASCIIText to Postscript text.

New types of printers and texts will be added in the near future.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Alexander’s patterns

“Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem,

in such a way that you can use this solution a million times over, without
doing it the same way twice”

— Alexander uses this as part of the solution to capture the “quality without a
name”

Roel Wuyts — Design of Software Systems
Creative Commons License 4

Illustrating Recurring Patterns...

Zurich (Switzerland)

TEE : AT AR e
PN T
I — [T

By, N
sy ;

Osio (China)

—_—

Singapore (Thailand)

Brussels (Belgium)

Do not overreact seeing all these patterns!
Do not apply too many patterns!
Look at the trade-offs!

Most patterns makes systems more complex!

— but address a certain need.

As always: do good modeling.
— First start your design and note problems or difficulties,

— then propose multiple potential solutions with different trade-offs,

e potentially using patterns,

— then take motivated decision

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Design Patterns

A Design Pattern is a pattern that captures a solution to a recurring design
problem

- It is not a pattern for implementation problems

— It is not a ready-made solution that has to be applied
e It's still up to you !
e You can simply use the pattern for inspiration,
e Or only apply part of the design pattern

e Remember the basic OO design principles and use them to weigh your design

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Adapt to suit taste, allergies, nr. of people, available ingredients, ...

Ingredients
8 endives, intact but cored
4 tablespoons butter
8 slices low-sodium ham
2 tablespoons all-purpose flour
2 cups whole milk
Freshly cracked black pepper, for seasoning

1/8 teaspoon freshly grated nutmeg

8 ounces Gruyere cheese, grated

Directions

Special Equipment: Steaming basket
Serving Suggestion: French baguette, sliced
Preheat oven to 350 to 375 degrees F.

In a large pot fitted with a steaming basket, bring 1-inch of
water to a boil. Place the endives in the basket, cover, and
let cook until very soft, about 10 to 15 minutes. Transfer to
a colander and let drain, pushing down on the endives
with a clean kitchen towel until as much of the water as
possible has been expelled. Do not mush the endives!

In a large frying pan over medium-high heat, melt 2
tablespoons of the butter. When the foam has subsided,
add the endives and cook, turning occasionally, until
brown and caramelized on all surfaces. Remove from
heat and wrap each endive in 1 slice of the ham. Set
aside

In a small saucepan over medium heat, melt the
remaining 2 tablespoons of butter. When the foam has
subsided whisk in the flour and cook 1 minute, being
careful not to brown the flour. Whisk in the milk in a slow,
steady stream. Bring to a boil whisking constantly, then
reduce heat to medium-low and simmer until thickened,
about 8 minutes. Season with a generous amount of
pepper and the nutmeg

Spread about 1 cup of the sauce over the bottom of a 9 by
13-inch glass or ceramic baking dish, then arrange the
ham-wrapped endives on top in a single layer. Cover with
the remaining sauce and the cheese. Bake until the
cheese is melted and the sauce is bubbling, about 30
minutes. Turn on the broiler, transfer the pan to the top
rack, and broil until the cheese has patches of golden
goodness - about 2 minutes. Serve hot with generous
amounts of sauce and baguette slices

Recipe courtesy of Amy Finley

Creative Commons License 4

Roel Wuyts — Design of Software Systems

Design Patterns

Example:

- "We are implementing a drawing application. The application allows the user
to draw several kinds of figures (circles, squares, lines, polymorphs, bezier
splines). It also allows to group these figures (and ungroup them later).
Groups can then be moved around and are treated like any other figure.”

Look at Composite Design Pattern

Roel Wuyts — Design of Software Systems
Creative Commons License 4

Pattern structure

A design pattern is a kind of blueprint

Consists of different parts

— All of these parts make up the pattern!

- When we talk about the pattern we therefore mean all of these parts
together

e not only the class diagram...

Tip: remember this for the exam - know your complete pattern

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Why Patterns?

Smart

— Elegant solutions that a novice would not think of

Generic

- Independent on specific system type, language
e Although biased towards statically-typed class-based OO languages (C++, Java, ...)

Well-proven
— Successfully tested in several systems
Simple

— Combine them for more complex solutions

Roel Wuyts — Design of Software Systems

Creative Commons License 4

GoF Design Pattern Book

Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995

— Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (Gang-of-Four
(GoF))

Book is still very relevant today but (depending on edition):
— Original book uses OMT notation (analogous to UML)

— illustrations are in C++
e Principles valid across OO languages!

e \Versions of book exists with illustrations in Java, ...

Roel Wuyts — Design of Software Systems

Creative Commons License 4

GoF Design Pattern Book

23 Design Patterns

Classification
— according to purpose

— according to problems they solve (p. 24-25)

— according to degrees of freedom (table 1.2, p. 30)

Goal is to make it easy to find a pattern for your problem

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Design Pattern Relationships

Roel Wuyts — Design of Software Systems

Creative Commons License 4

/————.

saving state

Builder of iteration

Tosioreeh Bridge

composed
'/ gmms's using Command
Decorator J Ty
traversals ,%ﬁg’,gn
Visitor
changing skin
versus guts
o Operations
J (i M Chain of Responsibility
Strategy sharing symbols
states Mediator fe—0
complex
dopSniond’,——] Obesrver
State
de
aloontim's
su
Template Method |————— Offen uses
Prototype "~
configure factory /——— Factory Method
dynamically implement using
. / Abstract Factory
instance
/ 1 Facade
Singleton

Figure 1.1: Design pattern relationships

Visitor

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Visitor

Category
— Behavioral
Intent

— Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates.

Motivation

MNode

Twioelheck()
Ganargieoda)
Fratty Py}

A

VariableRefMode AssignmentMNode
TypelChack Typelhack}

CGenerateCodae]) CGenerateCode()
PretiyPrint{) PrettyPrint])

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Motivation (cont)

NodeVisitor

VisitAssignmentfAssignmentNode)
VizitVariableReff VarableRafNade)

A
| |

CodeGeneratingVisitor

TypeCheckingVisitor

VisitAssignment(AssignmentMade)

VisitAssignment{AssignmentMNode)
WigitVariableRef(VariabisRefMNode)

VisitvariableRef{Variable RetMode)

Program CC:—-J Node

AccepliNodeVisitor)

A

AssignmentNode VariableRefMNode

AcceptModeVisitor v) EI-'- AcceptbodeVisitor v} ?
: i
| 1

v-=\isitVariableFef(this)

- :-‘u’isitﬁ.ssignmenl‘{ihis:lh

Roel Wuyts — Design of Software Systems
Creative Commons License 4

Applicability

An object structure contains many classes of objects with differing
interfaces and you want to perform operations on these objects that
depend on their concrete classes.

Many distinct and unrelated operations need to be performed on objects in
an object structure an you want to avoid “polluting” their classes with
these operations.

The classes defining the object structure rarely change but you often want
to define new operations over the structure.

17

Structure

el

fmey

Visifor

VisitConcrete ElemantdfDoncraefeElemeanitA)
VisitiConcreteElermaeriBf ConcratfeElemsnt8)

A

Concrateisitor ConcreteVisitor2
VisitConcrateElemantaiConcraieElaermanta) VisitConcraleElementd] ConcretaElameantd)
VisitConcreteElementBlConcreteEleamentB) VisitConcreteElemmentB{Concrete ElemeantB)

Roel Wuyts — Design of Software Systems

Creative Commons License 4

ObjectStructure e Element
AcceptVisifar)
I I

ConcreteElemeanti ConcreteElemantB
Accapi{WVisitar v) o SccaptWVisitor v} o
Operalionsd) ' OperationBi) '

\ \

: :

'-.-'—:-‘-.-’isithm:releElerrbenl.ﬂ.n:mis:lH v—=Wisit oncreteE IementE!l:lhis:lH

Sequence

anObjectStructure aConcrateElemanta, aConcreteElementB aConcrateVisitor

J‘ Accept(aVisitor) J_

™ | VisitConcreteElementA{aConcreteElamenti)

IH Oparationd])

Accept(aVisitor) T

- VisitConcreteElementB{aConcreteElementB]

IL. OperationBi)

T T

Cfr. Double Dispatch - this is key to this pattern in order to link concrete elements and concrete visitors !

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Participants

Visitor

— Declares a Visit operation for each class of ConcreteElement in the object
structure.

— The operations name and signature identifies the class that sends the Visit
request.

ConcreteVisitor
- Implements each operation declared by Visitor.

— Each operation implements a fragment of the algorithm for the
corresponding class of object in the object structure.

— Provides the context for the algorithm and stores its state (often
accumulating results during traversal).

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Participants (cont)

Element

— Defines an accept operation that takes a Visitor as an argument.

ConcreteElement

— Implements an accept operation that takes a visitor as an argument.

ObjectStructure
— Can enumerate its elements.
— May provide a high-level interface to allow the visitor to visit its elements.

- May either be a Composite or a collection such as a list or set.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Collaborations

A client that uses the visitor pattern must create a ConcreteVisitor object

and then traverse the object structure visiting each element with the
Visitor.

When an element is visited, it calls the Visitor operation that corresponds
to its class. The element supplies itself as an argument to this operation.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Consequences

Makes adding new operations easy.

— a new operation is defined by adding a new visitor (in contrast, when you
spread functionality over many classes each class must be changed to
define the new operation).

Gathers related operations and separates unrelated ones.

- related behavior is localised in the visitor and not spread over the classes
defining the object structure.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Consequences (cont)

Adding new ConcreteElement classes is hard.

— each new ConcreteElement gives rise to a new abstract operation in Visitor
and a corresponding implementation in each ConcreteVisitor.

Allows visiting across class hierarchies.

— an iterator can also visit the elements of an object structure as it traverses
them and calls operations on them but all elements of the object structure
then need to have a common parent. Visitor does not have this restriction.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Consequences (cont)

Accumulating state

— Visitor can accumulate state as it proceeds with the traversal. Without a
visitor this state must be passed as an extra parameter of handled in global
variables.

Breaking encapsulation

— Visitor’s approach assumes that the ConcreteElement interface is powerful
enough to allow the visitors to do their job. As a result the pattern ofthen
forces to provide public operations that access an element’s internal state
which may compromise its encapsulation.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Known Uses

In the Smalltalk-80 compiler.

In 3D-graphics: when three-dimensional scenes are represented as a
hierarchy of nodes, the Visitor pattern can be used to perform different
actions on those nodes.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Visitor Pattern

So, we've covered the visitor pattern as found in the book

— Are we done?

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Decisions, decisions ...

visit(OperationA a)
visit(OperationB b)

VS
visitOperationA(OperationA a)
visitOperationB(OperationB b)

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Short Feature...

Roel Wuyts — Design of Software Systems
Creative Commons License 4

What is the result of the following expression?

class A {
public void m(A a) { System.out.printin("1"); }
}

class B extends A {
public void m(B b) { System.out.printin("2"); }
public void m(A a) { System.out.printin("3"); }

B b =new B();
Aa=Db;
a.m(b);

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Main Feature...

Roel Wuyts — Design of Software Systems
Creative Commons License 4

MY NEW DESIGN WILL
MEET ALL OF OUR
CUSTOMERS CURRENT
AND FUTURE NEEDS.

Visiting all Elements in the CDT Parsetree

public abstract class ASTVisitor {

public int visit(IASTTranslationUnit tu) { return PROCESS_CONTINUE; }
public int visit(ASTName name) { return PROCESS_CONTINUE; }
public int visit(IASTDeclaration declaration) { return PROCESS_CONTINUE; }
public int visit(IASTInitializer initializer) { return PROCESS_CONTINUE; }

public int visit(IASTParameterDeclaration parameterDeclaration) {return PROCESS CONTINUE; }

public int visit(IASTDeclarator declarator) { return PROCESS_CONTINUE; }
public int visit(IASTDeclSpecifier declSpec) { return PROCESS_CONTINUE; }
public int visit(IASTExpression expression) { return PROCESS_CONTINUE; }
public int visit(IASTStatement statement) { return PROCESS_CONTINUE; }
public int visit(IASTTypeld typeld) { return PROCESS_CONTINUE; }
public int visit(ASTEnumerator enumerator) { return PROCESS_CONTINUE; }
public int visit(IASTProblem problem) { return PROCESS_CONTINUE; }

Roel Wuyts — Design of Software Systems

Creative Commons License 4

To Arms! The Short Feature is Attacking the Main Feature

Roel Wuyts — Design of Software Systems
Creative Commons License 4

Advanced Visitor Discussions

When looking more closely at the visitor and its implementation, we can
discuss a number of things in more detail:

— Who controls the traversal?
— What is the granularity of the visit methods?

- Does there have to be a one-on-one correspondence between Element
classes and visit methods ?

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Composite

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Composite

Category

— Structural

Intent

— Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly.

Motivation

aPicture

aPicture

aRectangle

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Motivation (cont)

Roel Wuyts — Design of Software Systems

Creative Commons License 4

_____________ forall g in graphics

q.Draw)

T

Graphic ot
Dirawi}
Add{Graphic)
Aemove({Graphic)
GatChild{ing)
| | | | graphics
Line Hectangle Text Picture o —————
Dirawi(} Drawi} Draw(} Draw(} C-—-————
Add{Graphic g} G-p-——-- !
Remove({Graphsc) !
GelChikdiing) iy

add g to list of graphics

T

Applicability

Use the Composite Pattern when:
— you want to represent part-whole hierarchies of objects.

— you want clients to be able to ignore the difference between compositions of
objects and individual objects. Clients will treat all objects in the composite
structure uniformly.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Structure

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Client

aComposite
aleaf aleaf aComposite
aleaf aLeaf

Component

e

Clparationd}

AdafCompaonant)
Hemova{Componani)

GetChildiint)

A

Leaf

Composite

childran

Operation|)

Cparation() B------
Add{Componeant)
Femove(Component)
GatChild{int

forall g in chiidren
5.0y

perationd);

T

alLeaf

aleaf

Participants

Component
— Declares the interface for objects in the composition.

- Implements default behaviour for the interface common to all classes, as
appropriate.

— Declares an interface for accessing and managing its child components.

Leaf
— Represents leaf objects in the composition. A leaf has no children.

— Defines behaviour for primitive objects in the composition.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Participants (cont)

Composite
— defines behaviour for components having children.
— stores child components.

- implements child-related operations in the Component interface.

Client

- manipulates objects in the composition through the Component interface.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Collaborations

Clients use the Component class interface to interact with objects in the
composite structure. Leaves handle the requests directly. Composites
forward requests to its child components.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Consequences

Defines class hierarchies consisting of primitive and composite objects.

Makes the client simple. Composite and primitive objects are treated
uniformly (no cases).

Eases the creation of new kinds of components.

Can make your design overly general.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Known Uses

Can be found in almost all object oriented systems.

The original View class in Smalltalk Model / View / Controller was a
composite.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

How does the Composite pattern help to consolidate system-wide
conditional logic?

Would you use the composite pattern if you did not have a part-whole
hierarchy? In other words, if only a few objects have children and almost
everything else in your collection is a leaf (a leaf that has no children),
would you still use the composite pattern to model these objects?

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Patterns Catalogue

- Command - Proxy

— Decorator — Adapter

— Strategy — Observer

- Factory Method — Chain of Responsibility
— Abstract Factory - FlyWeight

— Singleton — Facade

See Design pattern books,
’ Or the patterns reference on website ‘

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Architectures

"can't be made, but only generated, indirectly, by the ordinary actions of
the people, just as a flower cannot be made, but only generated from the
seed." (Alexander)

— patterns describe such building blocks
— applying them implicitly changes the overall structure (architecture)

— whether it is on classes, components, or people

Roel Wuyts — Design of Software Systems

Creative Commons License 4

Conclusion

Can you answer this?
- How does Strategy improve coupling and cohesion?
— Does Abstract Factory says the same than the Creator GRASP Pattern?
— Can you give examples of patterns that can be used together ?

- When does it make sense to combine the Iterator and the Composite
Pattern ?

Roel Wuyts — Design of Software Systems

Creative Commons License 4

License: Creative Commons 4.0 http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate
if changes were made. You may do so in any reasonable manner, but not in any way that

® suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

Roel Wuyts — Design of Software Systems

Creative Commons License 4

