
Design of Software Systems
(Ontwerp van SoftwareSystemen)

Roel Wuyts

2015-2016

Design Patterns Reference

Roel Wuyts
Creative Commons License 4 2

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Visitor

See lecture on design patterns

Roel Wuyts
Creative Commons License 4 3

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Composite

See lecture on design patterns

Roel Wuyts
Creative Commons License 4 4

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Patterns Catalogue Reference

– Strategy

– Decorator

– Command

– Factory Method

– Singleton

– Abstract Factory

– Proxy

– Adapter

– Observer

– Chain of Responsibility

– FlyWeight

– Facade

Roel Wuyts
Creative Commons License 4 5

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Strategy

Roel Wuyts
Creative Commons License 4 6

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Strategy

Goal: encapsulate algorythms to make them interchangeable

variation of algorithms becomes possible

Considerations for implementation:

– Coupling between Context – Strategy:

• Pass data as parameters to Strategy

• Pass Context as parameter or as alias from Strategy

Roel Wuyts
Creative Commons License 4 7

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

Enables family of related algorithms. However common functionality needs
to be possible in the abstract root class of the hierarchy.

Alternative for subclassing. Use subclassing at algorithmic level instead of
context level.

No conditional statements needed – switch is implicit in used strategy
object

Can make different implementations of the same behavior (for example
with different execution speed/memory trade-off)

Caller needs to be aware of different possible strategies, and potentially
select one

…

Roel Wuyts
Creative Commons License 4 8

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences (ctd)

…

Communication-overhead between Context and Strategy
=> all potentially useful info needs to be passed but may be unused

Increasing number of objects in the system

=> Consider making Strategy a stateless object that can be shared
between context objects (see Flyweight)

Roel Wuyts
Creative Commons License 4 9

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Decorator

Roel Wuyts
Creative Commons License 4 10

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Problem Illustration: UI for text editor

How to add borders, scroll bars, … to a text widget ?

– Want to dynamically (at runtime) remove and combine them

• (e.g. only add scrollbar when text flows over text box, and remove if unneeded)

– Transparant usage of UI objects

Inheritance solution:

– Combinatorial explosion (1 class/combination)

– Static solution

Object composition solution:

– Dynamic solution

– Does Glyph own Border, or does Border owns Glyph ???

Roel Wuyts
Creative Commons License 4 11

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Problem Illustration: decorator approach

Design of class Border:

– Is visible element, so has to be subclass of Glyph

– Border can be treated as any other Glyph

• Conceptual solution:

• Singular component

• Compatible interfaces

Roel Wuyts
Creative Commons License 4 12

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Problem illustration: decorator approach

– Dynamic configuration

– Execution uses message passing

void MonoGlyph::Draw (Window* w) {

_component->Draw(w);

}

void Border::Draw (Window* w) {

MonoGlyph::Draw(w);

DrawBorder(w);

}

Roel Wuyts
Creative Commons License 4 13

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Decorator Pattern

Goal:

– Add behavior to individual objects dynamically and transparently

– Alternative for extension by subclassing

Roel Wuyts
Creative Commons License 4 14

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

Offers more flexibility than (static) subclassing

“pay as you go”: add small functional pieces instead of all-in-one

Decorated object has a different identity

Can result in many small objects

Implementation consideratons:

– keep the component class lightweight

– Only use an abstract decorator when there are multiple responsibilities

Roel Wuyts
Creative Commons License 4 15

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Decorator or Strategy ?

They both adapt object behaviour

Strategy has to be known by component, but can have different interface

Strategy preferable when the Component class is heavyweight

Roel Wuyts
Creative Commons License 4 16

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Command

16

Roel Wuyts
Creative Commons License 4 17

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example: separating UI from domain-level functionality in text editor

Gols:

– Separate domain operations from UI

• Show a single operation in different ways in the GUI

• Otherwise results in high coupling between UI classes and application

– Support undo and redo of operations

Solution: introduce Command class

Roel Wuyts
Creative Commons License 4 18

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Command Pattern: example

Every concrete Command class has information about and implements a
single operation

Roel Wuyts
Creative Commons License 4 19

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Command

Goal:

– Turn operations into first-order objects in order to manipulate them
(parametrization, queueing, logging, undoing, …)

Structure:

Roel Wuyts
Creative Commons License 4 20

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

Decouples caller and executor

Commands become first-class entities that can be manipulated and
extended

Commands can be grouped in composite commands

Makes it easy to add new commands

– no need to change a given base class

Roel Wuyts
Creative Commons License 4 21

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Factory Method

Roel Wuyts
Creative Commons License 4 22

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Factory Method

Category

– Creational

Intent

– Define an interface for creating an object, but let subclasses decide which
class to instantiate. Factory Method lets a class defer instantiation to
subclasses.

Motivation

– When frameworks or toolkits use abstract classes to define and maintain
relationships between objects and are responsible for creating the objects
as well.

Roel Wuyts
Creative Commons License 4 23

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Motivation (cont)

Roel Wuyts
Creative Commons License 4 24

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applicability

Use the Factory Method pattern when

– a class can't anticipate the class of objects it must create.

– a class wants its subclasses to specify the objects it creates.

– classes delegate responsibility to one of several helper subclasses, and you
want to localize the knowledge of which helper subclass is the delegate.

Roel Wuyts
Creative Commons License 4 25

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Structure

Roel Wuyts
Creative Commons License 4 26

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants

Product

– Defines the interface of objects the factory method creates.

ConcreteProduct

– Implements the Product interface.

Creator

– Declares the factory method, which returns an object of type Product.
Creator may also define a default implementation of the factory method
that returns a default ConcreteProduct object.

– They call the factory method to create a Product object.

ConcreteCreator

– Overrides the factory method to return an instance of a ConcreteProduct.

Roel Wuyts
Creative Commons License 4 27

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Collaboration

Creator relies on its subclasses to define the factory method so that it
returns an instance of the appropriate ConcreteProduct.

Roel Wuyts
Creative Commons License 4 28

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

Eliminates the need to bind application specific classes into your code.

Clients might have to subclass the Creator class just to create a particular
ConcreteProduct object.

Provides hooks for subclasses

– the factory method gives subclasses a hook for providing an extended
version of an object.

Connects parallel class hierarchies

– a client can use factory methods to create a parallel class hierarchy (parallel
class hierarchies appear when objects delegate part of their responsibilities
to another class).

Roel Wuyts
Creative Commons License 4 29

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Known Uses

Toolkits and frameworks

Class View in Smalltalk-80

– contains a defaultController method which is a Factory Method.

Class Behavior in Smalltalk-80

– contains a parserClass method which also is a factory method.

Could also be used to generated an appropriate type of proxy when an
object requests a reference to an object. Factory Method makes it easy to
replace the default proxy with another one.

Roel Wuyts
Creative Commons License 4 30

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Singleton

Roel Wuyts
Creative Commons License 4 31

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Singleton

Category

– Creational

Intent

– Ensure a class only has one instance, and provide a global point of access
to it.

Motivation

– There should be only one instance.

– For example, many printers, but only one printspooler.

– Using a global variable containing the single instance?

• Cannot ensure no other instances are created.

– Let the class control single instance.

Roel Wuyts
Creative Commons License 4 32

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applicability and Structure

Use Singleton pattern when

– There must be exactly one instance of al class, and it must be accessible to
clients from a well-known access point.

– When the sole instance should be extensible by subclassing, and clients
should be able to use an extended instance without modifying their code.

Structure

Roel Wuyts
Creative Commons License 4 33

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants and Collaborations

Participants

– Singleton

• Defines an instance operation that lets clients access its unique instance. Instance is a
class operation that will either return or create and return the sole instance.

• May be responsible for creating its own unique instance.

Collaborations

– Clients access a Singleton solely through Singleton’s instance operation.

Roel Wuyts
Creative Commons License 4 34

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

Controlled access to sole instance.

– Because the Singleton class encapsulates its sole instance, it can have strict
control over how and when clients access it.

Reduced name space.

– The Singleton pattern is an improvement over global variables that store
sole instances.

Roel Wuyts
Creative Commons License 4 35

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences (cont)

Permits refinement of operations and representation.

– The Singleton class may be subclassed, an application can be configured
with an instance of the class you need at runtime.

Permits a variable number of instances.

– The same approach can be used to control the number of instances that can
exist in an application, only the operation that grants access to the
instance(s) must be provided.

More flexible than class operations.

Roel Wuyts
Creative Commons License 4 36

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Known Uses

Every time you want to limit the creation of additional object after the
instantiation of the first one. This is usefull to limit memory usage when
multiple objects are not necessary.

Roel Wuyts
Creative Commons License 4 37

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Questions

What is the difference with a global variable?

Gamma (one of the authors of the book on Design Patterns) recently
pointed out that he was very unhapy with this pattern. More specifically he
claims that it usually indicates bad design. Can you imagine why he thinks
this ?

Roel Wuyts
Creative Commons License 4 38

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Abstract Factory

Roel Wuyts
Creative Commons License 4 39

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Abstract Factory

Category

– Creational

Intent

– Provide an interface for creating families of related or dependent objects
without specifying their concrete classes.

Motivation

– User interface toolkit for multiple look-and-feel standards.

– Provide an interface for creating families of related or dependent objects
without specifying their concrete classes.

Roel Wuyts
Creative Commons License 4 40

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Motivation (cont)

Motivation (cont)

Roel Wuyts
Creative Commons License 4 41

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applicability

Use the Abstract Factory pattern when

– a system should be independent of how its products are created, composed
and represented.

– a system should be configured with one of multiple families of products.

– a family of related product objects is designed to be used together, and you
need to enforce this constraint.

– you want to provide a class library of products, and you want to reveal just
their interfaces, not their implementations.

Roel Wuyts
Creative Commons License 4 42

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Structure

Roel Wuyts
Creative Commons License 4 43

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants

AbstractFactory

– Declares an interface for operations that create abstract product objects.

ConcreteFactory

– Implements the operations to create concrete product objects.

AbstractProduct

– Declares an interface for a type of product object.

Roel Wuyts
Creative Commons License 4 44

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants (cont)

ConcreteProduct

– Defines a product object to be created by the corresponding concrete
factory.

– Implements the AbstractProduct interface.

Client

– Uses only interfaces declared by AbstractFactory and AbstractProduct
classes.

Roel Wuyts
Creative Commons License 4 45

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Collaborations

Normally a single instance of ConcreteFactory is created at run-time. This
concrete factory creates products having a particular implementation.

AbstractFactory defers creation of product objects to its ConcreteFactory
subclass.

Roel Wuyts
Creative Commons License 4 46

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

It isolates concrete classes.

– The abstract factory encapsulates the responsibility and the process of
creating product objects, it isolates clients from implementation classes.

– Product class names are isolated in the implementation of the concrete
factory and do not appear in the client code.

It makes exchanging product families easy.

– The concrete factory appears only one in the application – that is, where it
is instantiate – to it is easy to replace.

Roel Wuyts
Creative Commons License 4 47

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences (cont)

It promotes consistency among products.

– When products of one family are designed to work together, it is important
for an application to use objects from one family only.

– The abstract factory makes this easy to enforce.

Supporting new kinds of products is difficult.

– Because the abstract factory interface fixes the set of products that can be
created, it is not easy to add new products.

– This would require extending the factory interface which involves extending
changing the abstract factory and all its subclasses.

Roel Wuyts
Creative Commons License 4 48

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Known Uses

Usually used in toolkits for generating look-and-feel specific user interface
objects.

Also used to achieve portability across different window systems.

Roel Wuyts
Creative Commons License 4 49

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Questions

Describe the working of the abstract factory pattern with your own words.

What pattern(s) is (are) often used together with the abstract factory
pattern?

Roel Wuyts
Creative Commons License 4 50

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Proxy

Roel Wuyts
Creative Commons License 4 51

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Proxy

Category

– Structural

Intent

– Provide a surrogate or placeholder for another object to control access to it.

Motivation

– Defer the full cost of the creation and initialisation of an object until we
actually need it.

– For example: a document with lots of graphical objects can be expensive to
create, but opening it should be fast.

– A proxy could act as a stand-in for the real objects.

Roel Wuyts
Creative Commons License 4 52

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Kinds of Proxies

a remote proxy provides a local representative for an
object in a different address space.

a virtual proxy creates expensive objects on demand.

a protection proxy controls access to the original object
and are useful when objects have different access rights.

a smart reference is a replacement for a bare pointer that
performs additional actions when an object is accessed:
e.g. counting references, loading a persistent object when
it is first referenced, locking the real object, ...

Proxy

Client class

Real class

Roel Wuyts
Creative Commons License 4 53

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Structure

Roel Wuyts
Creative Commons License 4 54

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants

Proxy

– Maintains a reference that lets the proxy access the real subject.

– Provides an interface identical to the Subject’s so that a proxy can be
substituted for the real subject.

– Controls access to the real subject and may be responsible for creating and
deleting it.

– Remote proxies are responsible for encoding a request and its arguments
and for sending the request to the real subject in the other address space.

– Virtual proxies may cache information about the real subject so that they
can postpone accessing it.

– Protection proxies check that the caller has the access permission to
perform a request.

Roel Wuyts
Creative Commons License 4 55

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants (ctd) and Collaboration

Participants (cont)

– Subject

• Defines a common interface for RealSubject and Proxy so that a Proxy can be used
anywhere a RealSubject is expected.

– RealSubject

• Defines the real object that the proxy represents.

Collaboration

– Proxy forwards requests to RealSubject when appropriate, depending on the
kind of Proxy.

Roel Wuyts
Creative Commons License 4 56

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

The Proxy pattern introduces a level of indirection when accessing an
object. This indirection has many uses:

– A remote proxy can hide the fact that the object resides in a different
address space.

– A virtual proxy can perform optimisations.

– Both protection proxies and smart pointers allow additional housekeeping.

Roel Wuyts
Creative Commons License 4 57

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences (cont)

The proxy patterns can be used to implement “copy-on-write”.

– To avoid unnecessary copying of large objects the real subject is referenced
counted.

– Each copy requests increments this counter but only when a clients
requests an operation that modifies the subject the proxy actually copies it.

Roel Wuyts
Creative Commons License 4 58

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Known Uses

Encapsulators can be implemented as proxies.

They are often used to represent local representatives for distributed
objects.

They have been used in textbuilding tools to enhance performance.

Roel Wuyts
Creative Commons License 4 59

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Questions

If a Proxy is used to instantiate an object only when it is absolutely
needed, does the Proxy simplify code?

Roel Wuyts
Creative Commons License 4 60

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Adapter

Roel Wuyts
Creative Commons License 4 61

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Adapter

Category

– Structural

Intent

– Convert the interface of a class into another interface clients expect. Lets
classes with incompatible interfaces work together.

Motivation

– Sometimes a toolkit class is not reusable because its interface does not
match the domain-specific interface an application requires.

– A drawing editor has one abstraction for lines and textboxes, but textbox
has a different interface and implementation.

Roel Wuyts
Creative Commons License 4 62

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Motivation (cont)

Roel Wuyts
Creative Commons License 4 63

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applicability

Use Adapter when

– You want to use an existing class, and its interface does not match the one
you need.

– You want to create a reusable class that cooperates with unrelated or
unforeseen classes, which do not necessarily have compatible interfaces.

– (object adapter only) You need to use several existing subclasses, but it’s
impractival to adapt their interface by subclassing every one. An object
adapter can adapt the interface of its parent class.

Roel Wuyts
Creative Commons License 4 64

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Structure

– Class adapter

– Object adapter

Roel Wuyts
Creative Commons License 4 65

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants and Collaborations

Participants

– Target

• Defines the domain-specific interface that Client uses.

– Client

• Collaborates with objects conforming to the Target interface.

– Adaptee

• Defines an existing interface that needs adapting.

– Adapter

• Adapts the interface of Adaptee to the Target interface.

Collaborations

– Clients call operations on an Adapter instance. In turn, the adapter calls
Adaptee operations that carry out the request.

Roel Wuyts
Creative Commons License 4 66

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

How much adapting does Adapter do?

– Ranges from simple interface conversion to supporting an entirely different
set of operations.

Pluggable adapters.

– By building interface adaption into a class, it becomes more reusable
because it does not assume the same interface to be used by other classes.

Using two-way adapters to provide transparency.

– An adapted object no longer conforms to the Adaptee interface, so it can’t
be used as is wherever an Adaptee object can. Two-way adapters can
provide such transparency.

Roel Wuyts
Creative Commons License 4 67

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Questions

Would you ever create an Adapter that has the same interface as the
object which it adapts? Would your Adapter then be a Proxy?

Roel Wuyts
Creative Commons License 4 68

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Observer

Roel Wuyts
Creative Commons License 4 69

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Observer

Category

– Behavioral

Intent

– Define a one-to-many dependency between objects so that when one object
changes state, all its dependants are notified and updated automatically.

Motivation

– different types of GUI elements depicting the same application data.

– different windows showing different views on the same application model.

Roel Wuyts
Creative Commons License 4 70

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applicability

When an abstraction has two aspects, one dependant on the other.
Encapsulating these aspects in seperate objects lets you vary and reuse
them independently.

When a change to one object requires changing others, and you don't
know how many objects need to be changed.

When an object should be able to notify other objects without making
assumptions about who these objects are. In other words, you do not
want these objects tightly coupled.

Roel Wuyts
Creative Commons License 4 71

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Structure

Roel Wuyts
Creative Commons License 4 72

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants

Subject

– knows its observers. Any number of Observer objects may observe an
object.

– provides an interface for attaching and detaching Observers.

Observer

– defines an updating interface for objects that should be notified of changes
in a subject.

Roel Wuyts
Creative Commons License 4 73

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants (cont)

ConcreteSubject

– stores state of interest to ConcreteObserver objects.

– sends a notification to its observers when its state changes.

ConcreteObserver

– maintains a reference to a ConcreteSubject object.

– stores state that should stay consistant with the subject's.

– implements the Observer updating interface.

Roel Wuyts
Creative Commons License 4 74

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Collaborations

Roel Wuyts
Creative Commons License 4 75

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

Abstract and minimal coupling between Subject and Observer.

– The subject does not know the concrete class of any observer. Concrete
subject and concrete observer classes can be reused independently.

Support for broadcast communication.

– The notification a subject sends does not need to specify a receiver, it will
broadcast to all interested parties.

Roel Wuyts
Creative Commons License 4 76

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences (cont)

Unexpected updates.

– Observers don’t have knowledge about each other’s presence, a small
operation may cause a cascade of updates.

Roel Wuyts
Creative Commons License 4 77

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Known Uses

Best known use is Smalltalk Model/View/Controller.

Roel Wuyts
Creative Commons License 4 78

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Questions

There are two methods for propagating data to observers with the
Observer design pattern: the push model and the pull model. Why would
one model be preferable over the other? What are the trade-offs of each
model?

In what real-world system can we expect encounter the Observer pattern
quite often?

Roel Wuyts
Creative Commons License 4 79

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Chain of Responsibility

Roel Wuyts
Creative Commons License 4 80

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Chain of Responsibility

Category

– Behavioral

Intent

– Avoid coupling the sender of a request to its receiver by giving more than
one object a chance to handle the request. Chain the receiving objects and
pass the request along the chain until an object handles it.

Motivation

Roel Wuyts
Creative Commons License 4 81

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applicability

Use Chain of Responsibility when

– more than one object may handle a request, and the handler is not known a
priori.

– you want to issue a request to one of several objects without specifying the
receiver explicitly.

– the set of objects that can handle a request should be specified
dynamically.

Roel Wuyts
Creative Commons License 4 82

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Structure

Roel Wuyts
Creative Commons License 4 83

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants

Handler

– defines an interface for handling objects.

– (optional) implements the successor link.

ConcreteHandler

– handles requests it is responsible for.

– can access its successor.

– if the ConcreteHandler can handle the request, it does so, otherwise it
forwards the request to its successor.

Client

– initiates the request to a ConcreteHandler object on the chain.

Roel Wuyts
Creative Commons License 4 84

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Collaborations and Consequences

Collaborations

– When a client issues a request, the request propagates along the chain until
a ConcreteHandler object takes responsibility to handle it.

Consequences

– Reduced Coupling

• The pattern frees an object from knowing which other object handles a request. An
object only has to know that a request will be handled appropriately.

Roel Wuyts
Creative Commons License 4 85

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences (cont)

Added flexibility in assigning responsibilities to objects.

– You can add or change responsibilities for handling a request by adding or
changing the chain at runtime.

– Receipt is not guaranteed.

• Since a request has no implicit receiver, there is no guarantee that it will be handled, it
could fall of the end of the chain without being handled.

Roel Wuyts
Creative Commons License 4 86

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Known Uses

Different class libraries use this pattern, giving different names to
handlers, e.g. when a user clicks on a mouse button, an event gets
generated and passed along the chain.

Is also used in graphical systems, where a graphical object propagates the
request for an update to its enclosing container object, because that
object has more information about its context.

Roel Wuyts
Creative Commons License 4 87

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Questions

What pattern(s) would you use in combination with the Chain of
Responsibility? Why?

Roel Wuyts
Creative Commons License 4 88

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Flyweight

Roel Wuyts
Creative Commons License 4 89

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Flyweight

Category

– Structural

Intent

– Use sharing to support large numbers of fine-grained objects efficiently.

Motivation

– Some applications benefit from using objects in their design but a naive
implementation is prohibitively expensive because of the large number of
objects.

– For example a document editor uses an object for each character in the
text.

Roel Wuyts
Creative Commons License 4 90

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Motivation (cont)

Roel Wuyts
Creative Commons License 4 91

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Motivation (cont)

Roel Wuyts
Creative Commons License 4 92

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applicability

Apply the Flyweight pattern when all of the following are true:

– An application uses a large number of objects.

– Storage cost is high because of the quantity of objects.

– Most objects can be made extrinsic.

– Many groups of objects can be replaced by relatively few shared objects
once extrinsic state is removed.

– The application does not depend on object identity.

Roel Wuyts
Creative Commons License 4 93

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Structure

Roel Wuyts
Creative Commons License 4 94

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants

Flyweight

– Declares an interface through which flyweights can receive and act upon
extrinsic state.

Concrete Flyweight

– Implements the flyweight interface and adds storage for intrinsic state.

– A concrete flyweight object must be shareable, i.e. state must be intrinsic.

Unshared Concrete Flyweight

– Not all flyweights subclasses need to be shared, unshared concrete
flyweight objects have concrete flyweight objects at some level in the
flyweight object structure.

Roel Wuyts
Creative Commons License 4 95

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants (cont)

Flyweight Factory

– Creates and manages flyweight objects.

– Ensures that flyweights are shared properly; when a client requests a
flyweight the flyweight factory supplies an existing one from the pool or
creates one and adds it to the pool.

Client

– Mainrains a reference to flyweight(s).

– Computes or stores the extrinsic state of flyweight(s).

Roel Wuyts
Creative Commons License 4 96

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Collaborations

State that a flyweight needs to function must be characterised as either
intrinsic or extrinsic. Intrinsic state is stored in the concrete flyweight
object; extrinsic state is stored or computed by client objects. Clients pass
this state to the flyweight when invoking operations.

Clients should not instantiate concrete flyweights directly. Clients must
obtain concrete flyweight objects exclusively from the flyweight factory
object to enshure that they are shared properly.

Roel Wuyts
Creative Commons License 4 97

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

Flyweights may introduce run-time costs associated with transferring,
finding, and/or computing extrinsic state.

The increase in run-time cost are offset by storage savings which increase

– as more flyweights are shared.

– as the amount of intrinsic state is considerable.

– as the amount of extrinsic state is considerable but can be computed.

Roel Wuyts
Creative Commons License 4 98

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences (cont)

The flyweight pattern is often combined with the composite pattern to
build a graph with shared leaf nodes. Because of the sharing, leaf nodes
cannot store their parent which has a major impact on how the objects in
the hierarchy communicate.

Roel Wuyts
Creative Commons License 4 99

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Known Uses

Has been used in e.g. document editors. When first introduced in such an
editor, only the style and and character code of the characters were
intrinsic, while the position of the characters was extrinsic. This made the
program very fast. In a document containing 180.000 characters, only 480
character objects had to be allocated.

Can also be used to abstract the look and feel of layouts. Only the objects
of the flyweight pool have to be replaced to change a complete layout.

Roel Wuyts
Creative Commons License 4 100

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Questions

Give a non-GUI example of a flyweight.

What is the minimum configuration for using flyweight? do you need to be
working with thousands of objects, hundreds, tens?

Suppose you have to implement a texteditor. The text of the texteditor
consists of lines and characters on the lines.

Roel Wuyts
Creative Commons License 4 101

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Facade

Roel Wuyts
Creative Commons License 4 102

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Facade

Category

– Structural

Intent

– Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.

Motivation

facade

Client classes

Subsystem classes

Roel Wuyts
Creative Commons License 4 103

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Motivation (cont)

Provide a simple interface to a complex subsystem.

Decouple a subsystem from clients and other subsystems.

Create layered subsystems by providing an interface to each subsystem
level.

Roel Wuyts
Creative Commons License 4 104

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Example

Roel Wuyts
Creative Commons License 4 105

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Applicability

Use the Facade pattern when

– you want to provide a simple interface to a complex subsystem.

– there are many dependencies between clients and the implementation
classes of an abstraction. Introduce a facade to decouple the subsystem
from clients and other subsystems, thereby promoting subsystem
independence and portability.

– you want to layer your subsystems. Use a facade to define an entry point to
each subsystem level. If subsystems are dependent, then you can simplify
the dependencies between them by making them communicate with each
other solely through their facades.

Roel Wuyts
Creative Commons License 4 106

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Structure

Roel Wuyts
Creative Commons License 4 107

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Participants

Facade

– knows which subsystem classes are responsible for a request.

– delegates client requests to appropriate subsystem objects.

Subsystem classes

– implement subsystem functionality.

– handle work assigned by the Facade object.

– have no knowledge of the facade; that is, they keep no references to it.

Roel Wuyts
Creative Commons License 4 108

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Collaborations

Clients communicate with the subsystem by sending requests to Facade,
which forwards them to the appropriate subsystem object(s). Although the
subsystem objects perform the actual work, the facade may have to do
work of its own to translate its interface to subsystem interfaces.

Clients that use the facade don't have to access its subsystem objects
directly.

Roel Wuyts
Creative Commons License 4 109

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Consequences

The Facade pattern offers the following benefits:

– It shields clients from subsystem components, thereby reducing the number
of objects that clients deal with and making the subsystem easier to use.

– It promotes weak coupling between the subsystem and its clients. Weak
coupling lets you vary the components of the subsystem without affecting
its clients.

– It doesn't prevent applications from using subsystem classes if they need
to. Thus you can choose between ease of use and generality.

Roel Wuyts
Creative Commons License 4 110

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Known Uses

We have seen the compiler example, but this pattern can be used for
other complicated frameworks as well.

Roel Wuyts
Creative Commons License 4 111

Roel Wuyts – Design of Software Systems

Creative Commons License 4

Questions

Describe the differences between Facade and Adapter.

How complex must a sub-system be in order to justify using a facade?

What are the additional uses of a facade with respect to an organization of
designers and developers with varying abilities? What are the political
ramifications?

Roel Wuyts
Creative Commons License 4 112

Roel Wuyts – Design of Software Systems

Creative Commons License 4

License: Creative Commons 4.0 http://creativecommons.org/licenses/by-sa/4.0/

