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Developing Complex Systems

• How do scientific disciplines construct complex 
systems ?
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Architectural Software
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RF/mW Design & Analog/RFIC Verification
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Visualization & Manipulation of molecules
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Computer Science/Engineering…
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Corollary
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• We need to construct systems that are typically more 
complex than in other disciplines 

– for several reasons 

• We have tangible elements to manipulate 

– Buildings, circuits and molecules need a representation 
that is different than their physical one 

!

• Yet lots of developers still seem to prefer basic tools 

– yes, emacs is a basic tool...



Eclipse/Netbeans/IntelliJ/… ?
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Eclipse...
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• Eclipse is a decent integrated development 
environment 

– integrates navigation, editing, unit tests, 
refactoring, ... 

– was developed by a lot of former Smalltalk people :-) 

• But at its core it is file-based (and so are most others) 

– So ? Why don’t I like this ?
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Files versus Objects

• Non computer science disciplines: 

– Architects work with construction materials&buildings 

• So do their tools 

– Molecular biologists work with modules 

• Environment manipulates molecules 

– ... 

• We work with objects 

– Most tools deal with files ?!
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Smalltalk image approach

• The Smalltalk image is a live environment 

– consists entirely of objects 

– objects are manipulated 

• Files are one way of storing objects 

– code too, since code are objects 

– Databases are another mechanism, or network sockets 
or ...
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Sidenote on Environments

• Good developers tailor their environment 

– So they need to be easily extensible 

• emacs: easy 

• Smalltalk environments: easy 

• Eclipse: possible 

• Most environments: hard or not possible 

• Always favour an extensible one 

– control your tools!
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Multi-user Development

• Software engineering is a teamsport ;-) 

• Needed 

– a code repository that allows multiple users 

– integrated versioning 

– configuration management 

• The language also has packaging mechanisms 

– with or without namespaces 

• These concepts cross-cut
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Code repositories and multiple users

• Need to store code (obviously) 

– but preferable also binaries, documentation, tests, ... 

• Locking vs. concurrent 

– Lock: one user has (part of) code, unlocks when done 

– Concurrent (lazy locking): several users can work 
simultaneously on the same system 

• Centralized vs. Distributed 

– Centralized: Only the master repository contains complete 
version history 

– Distributed: all repositories have complete history 

• Support for merging
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Merges

• Two-way merge 

!

!

!

!

!

!

!

!

• Three-way merge
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Example

• One framework, 

• instantiated for two different clients, 

• each with their own customizations, 

• Where there is a stable version, 

• and two development branches 

– a new version and a brand new one 

– one dependent on the customization of the framework 
for one particular client
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Let’s view two systems

• Concurrent, centralized systems: 

– Subversion 

– Envy 

• Concurrent, distributed system: 

– git 

!

!

(Many more exist, but svn is archetypical for most 
popular tools like cvs/git, and Envy is a contrast)
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svn : Subversion

• descendant of cvs (concurrent versioning system) 

• Granularity: file 

• Users work detached from the repository: 

– Load local copy of files from svn server (repository) 

– Work on local copy (working directory) 

– Commit changed files back to repository 

• Loading local copy can be done from the network
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svn Workflow

• Check-out code from repository in local environment 

• Work on code. 

• can at all time see the difference between the current 
change and the state when checked-out 

• When finished, commit changes back to repository 

• can trigger (3-way) merge when repository was 
updated in the meantime
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Semantics

• svn (like cvs, git, …) versions text 

– has no semantics about what text it stores 

– works with latex files, C++ files, ... 

• Therefore its operations have no semantics 

– e.g. looking at changes after doing a renaming a 
method refactoring result in a list of textual changes to 
potentially many files 

• can be hard to know it was a refactoring, especially when 
combined when several other changes 

• commit often, and add comments !

20



Wuyts Roel 
© imec restricted 2007

Envy

• It’s a versioning system, but not as you know it ;-) 

• Users are meant to be always connected to the 
repository 

– can work separately but that is the exception 

• Works with methods, classes, ... 

– Versioning knows about your language concepts 

• e.g. have all versions for a particular class, automatically 
includes all methods for that version of the class 

– Smallest granularity is a method
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Envy Workflow

• Load code from repository in local environment 

• Work on code.  

• Every change of a method or a class automatically (!) 
creates an edition 

• These editions can be compared with, restored, … 

• Editions can be versioned 

• the edition then gets a name and version number 

• once versioned everybody in the repository can see and 
load versions 

• easier and earlier integration and conflict detection
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Envy: Configuration Management features

• From the ground up Envy has support for configuration 
management 

– Applications group classes and methods 

• can have editions and versions themselves 

• have prerequisite versions (!) 

– Configurations group applications 

• (e.g. Manifests in Microsoft .Net) 

– Support for conditional loading and prerequisites 

• Platform-specific code, for example 

• Can be at application or configuration level 

• Removes need for external build systems like cmake, Maven, …
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Git

!

• distributed version control system 

– Breaks the master/slave relationship prevalent in cvs/
svn 

• every repository has the complete history 

• repositories sync with each other 

– Good support for branching and advanced forms of 
version management (cherry picking, reverting 
changes, …) 

– Like svn/cvs/…: stores text
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Git workflow

• Many possibilities 

• Can of course do the centralised workflow (as in 
centralised approaches like svn/Envy/…)
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Git workflow
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Integration-Manager Workflow

Dictator and Lieutenants Workflow
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On granularity...

• With svn/git/…, you have a history of the files you’ve 
checked in 

• With Envy, you have a history of the development 
you did 

!

This is fundamentally different !
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What is Envy doing in Eclipse ?!
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Concepts in Code Repositories

• Code 

• Package 

• Configuration 

!

• Packages and Namespaces should be orthogonal 

– package contains definitions 

– namespaces is a visibility mechanism
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Versioning

• All the elements need to be versionable 

• Decisions, decisions: 

– granularity of version 

• line of code, method, class+methods, package, ... 

– forms of version numbers 

• single number, composed number, alphanumeric 

– version numbers versus release numbers 

• and their relationships
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Concrete example : Menu Framework
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Ingredient

Mushroom Cheese

Button
Mushroon

Shiitake
Grana 

Padano
Emmental

Menu MenuItem

FoodDrink

Caesar SaladSashimi

*
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Menu Framework with Visitor
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C++ Files

!

!

!

!

!

• Files can go in cvs 

– But decomposition is not the right one 

– What if the visitor traversal needs to be changed?
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Java Packages

!

!

!

!

!

• Packages to regroup classes, storage still in files 

• Decomposition still not the right one 

– What would be the right decomposition?
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Smalltalk class extensions

!

!

!

!

!

• Packages defines classes and/or methods 

– Can be different versions, under control of different 
people/project/companies
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Note: declarative packages

• Package systems should support software 
engineering and design principles 

– e.g. packaging Visitor pattern 

• Approaches exist but should become mainstream 

– Smalltalk’s class extensions 

– C# Partial classes and extension methods 

– Java Open Classes (for example in MultiJava) 

– … 

• PS: or multi-methods in Lisp (and from there other 
languages)
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Software-engineering wise

• Important to be able to separate development into 
logical, manageable pieces 

– e.g. Visitor design pattern 

• Each piece should have: 

– owners & responsibles 

– versions 

– dependencies 

– post-load and pre-unload statements
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Corollary

• Good packages support evolution 

– Company can sell parsetree 

– Other company can sell visitor for parsetree 

!

• Code repositories and packages should support 
flexible forms of packaging code 

!

• Code repositories, packaging & storage are linked
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Sidenote

• Design question: 

– why is the plug-in mechanism in Eclipse so difficult?
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Last but not least

• We discussed granularity 

– want to see the development you really did, not the 
changes you made 

• Nice example: Refactoring Scripts in Eclipse 

– Record and replay the refactorings you did 

!

• Why is this practical ?

40



Saving & Replaying Refactoring Scripts
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Conclusion

42

• Need for supporting Multi-user development 

– code repositories with concurrent access 

– version support 

– (automatic) merge support 

– configuration management 

• Current systems are quite weak 

– svn/git/… & files 

– proper packaging mechanisms 

– watch out for newer offerings
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