Design of Software Systems
(Ontwerp van SoftwareSystemen)

/ On Multi-user Development
Tools,Versioning and Packaging of code, their
Relations, the Universe and Every L

&Jec

Developing Complex Systems

» How do scientific disciplines construct complex
systems ?

Architectural Software

RF/mW Design & Analog/RFIC Verification

N Ansoft Designer /Nexxim Beta Release - nexdmpoweramp - Nexdm - s11s27

Fle Edt Vew Project Report2d Nexwm Orout Tools Window Meb

DE@E FAXD B (KiedWHEW

B BT FRA T Y LT X & %
o0l 0 o

+ gu:hcﬁ -~ el B B e riad wrm N ~
- neoemcrout -

. {Uﬂ 1 " | -

. { Nexem 1 O 0235 3323 £330 8338 0381 338!

o B Neombeths 1 o o o
+ B Nevembetha2 ‘B
'”w‘- ' »
s B testench ‘
= B VCO_scemase

=1
£ Exctators

- Pons
'§U| Moo=)
= i Andyse 1
Do < >

52 Tanwert
o Desgn vacaton
sw ~ -
oBM'

d ..._.e::- R ot
_Project | Components | Search | "> —
»l8ix

Visualization & Manipulation of molecules

HyperChem - AMPICILL HIN
Blo [Quld Select Qmplay Ogabases Sotwp Compute Anngtations Scipt L« Heb

DO +iwlla] AINOID| D@ ¥ wa & 2w

Computer Science/Engineering...

Buffers Files Tools Edit Search Help

| -

[| AL = AL/3600,0E+0
SPA = DPA
A = 1,0- 4,6747D-5
B = A=*3/6,0/206265, OE+0*»2
PARA = SPAx*(A+B*SPA*SPR)./3600,0E+0
T =T / 36525,0E+0
UTL = ({ =17,2327E+0 + ,01737E+0 = T)»SIN(OM)
. + { =1,2729E+0 =0,00013E+0 =T)» SIN(2 =0OM + 2=F - 2 » DD)
- + { ,2088E+0 + ,00002E+0 = T) = SIN(2=0M)
. + (L,2037E+0 + ,00002E+0 = T) = SIN(2% OM +2 = F))/ 3600
OL = OL+UTL
OL = AMOD(OL, 360,0E+0)
UTE = ((9,21E+0 + ,00091E+0 * T) = COS(0OM)
" +(,5522E+0 - ,00029E+0 * T)#* COS(2 =0M +2#F -2 = DO
~ +(L0909E+0 + ,0000dE+0 # T) #» COS(2= OM)
- +{ LOBBAE+0 - ,00005E+0 # T) #COS(2=0M+2=F))/ 3600
E = 23,0E+0 + 27.0E+0/60,0E+0 +8,26E+0/3600,0E+0
. ~46,845E+0%T/3600,0E+0 = ,0059E+0%T#*T/3600,0E+0
- + ,00181E+0 * T = T = T / 3600,0E+0
E = E+UTE
SB = SIN(AL * DTORAD)
CBE = COS(AL * DTORAD)
SE = SIN(E » DTORAD)
CE = COS{ E » DTORAD)
SL = SIN(OL = DTORAD)
A = CB » COS(OL + DTORAD)
r = CB » SL » CE - SB »SE
CC =CB » SL » SE +SB » CE
DELTAM =ATANZ2{CC,SORT (1.-CC*%2))*RTODEG
BPERAR = B/A
BPERR = BPERA/SORT (1+BPERA*BPERA)
ALFAL = ATAN2(BPERA,SORT (1.E+0-BPERA**2))

IF (A LT, 0,0) ALFAl1=ALFARL+PI

IF (A& ,GT, 0,0 ,AND, B .GT, 0,0) ALFA1=ALFA1 +PI2

ALFAM = ALFAL*RTODEG/15.0

IF (ALFAM .GT, 24,0) ALFAM=ALFAM-24
IF (ALFAM LT, 0.0) ALFAM=ALFAM+24

RETURN
Lmacs.: no.,.*

Garbaée 6élleét1ng...done

Corollary |

» We need to construct systems that are typically more
complex than in other disciplines

— for several reasons
» We have tangible elements to manipulate

— Buildings, circuits and molecules need a representation
that is different than their physical one

» Yet lots of developers still seem to prefer basic tools

- yes, emacs is a basic tool...

. Wuyts Roel
imec | -

Eclipse/Netbeans/Intellil/... ?

& Java - Task 99 - Eclipse SDX
Elo Edt Hevigue Sepch Broject Teasflan Bun Window Help
S~ Gotoworkem - Q Q- LA H G- ™4 O 13

m S0 DD A work Items [Resuks) Flrasm 2 [Flegie? 4 Active Bugs [Query)

g W -

N

= B Netac]vatstidn: 8060
| My Favcrites
- Advecbure Works (OMMI)
- J Trde: Setup: Migration of Work Items Dusaphne:
= [Team Queries
-.jkf.h!hm Classdcation
Z) MMy Tean Project Work Rems Aed Nortmend
o) Al Tasks
;] 28 Work [teess Iteramon: Northwind\Versen 2.0 Beta 1
) My Work Items
) Resolved Bugs
o L My Quaries Status
j Oo(\ﬂ:’ﬂ :.”'3"’" John v State Active
o 35 Corteso (Serum)
= 23 Northeund Rank
= L Work [tees
= | Team Queries
=3 Actve Bugs Description Mistory | Links File Attachments Details
'_j M Qualey of Service Requrements
) Al Scenarios History !
o) Al Tasks
o) A Werk [hees
2 My Work Items
3 My Work Ttewss for Al Team Progects
23 Project Checkint 12/5/2005 2:34:38 PM, Created by John
) Resohved bugs
= [My Queries =i Changed Fields
) Ivportant Tashs fer Mo toakd New Valve
=3 Werk Done Today Ticke etup: Migrasan of Work Ttems
- Docuverts trare Acte
L Reports Fav i

Task £99: Setup: Migration of Week Mems

Reason

Problems Javadoc Dedarstion 9 Emorlog IO FE il

» Eclipse is a decent integrated development
environment

— integrates navigation, editing, unit tests,
refactoring, ...

— was developed by a lot of former Smalltalk people :-)

o But at its core it is file-based (and so are most others)

- So ? Why don't I like this ?

Files versus Objects

» Non computer science disciplines:
— Architects work with construction materials&buildings
e So do their tools

— Molecular biologists work with modules

e Environment manipulates molecules

» We work with objects

— Most tools deal with files ?!

Smalltalk image approach

» The Smalltalk image is a live environment
— consists entirely of objects
— objects are manipulated

» Files are one way of storing objects

— code too, since code are objects

— Databases are another mechanism, or network sockets
or ...

Sidenote on Environments

» Good developers tailor their environment

— S0 they need to be easily extensible
® €MacCs. easy
e Smalltalk environments: easy
e Eclipse: possible

e Most environments: hard or not possible
» Always favour an extensible one

— control your tools!

imec Py

12

Multi-user Development |

o Software engineering is a teamsport ;-)
*» Needed
— a code repository that allows multiple users
- integrated versioning
— configuration management
» The language also has packaging mechanisms

— with or without namespaces

» These concepts cross-cut

Code repositories and multiple users

» Need to store code (obviously)

- but preferable also binaries, documentation, tests, ...
» Locking vs. concurrent

— Lock: one user has (part of) code, unlocks when done

— Concurrent (lazy locking): several users can work
simultaneously on the same system

o Centralized vs. Distributed

— Centralized: Only the master repository contains complete
version history

— Distributed: all repositories have complete history

e Support for merging

Tlcle | 14

» Two-way merge » Three-way merge

@
B N
A S
I ¢

A S
> I ¢
@

Example

e One framework,

» instantiated for two different clients,
o each with their own customizations,
» Where there is a stable version,

* and two development branches
— a hew version and a brand new one

— one dependent on the customization of the framework
for one particular client

lmec B | 6

Let’s view two systems

» Concurrent, centralized systems:
— Subversion
- Envy

» Concurrent, distributed system:

- git

(Many more exist, but svn is archetypical for most
popular tools like cvs/git, and Envy is a contrast)

lmec | 17

svn : Subversion |

» descendant of cvs (concurrent versioning system)
o Granularity: file
» Users work detached from the repository:
— Load local copy of files from svn server (repository)
— Work on local copy (working directory)

— Commit changed files back to repository

» Loading local copy can be done from the network

lmec tyisRoel | |g

svn Workflow _

» Check-out code from repository in local environment

o Work on code.

e can at all time see the difference between the current
change and the state when checked-out

» When finished, commit changes back to repository

e can trigger (3-way) merge when repository was
updated in the meantime

lmec B | 19

Semantics

» svn (like cvs, git, ...) versions text
- has no semantics about what text it stores
- works with latex files, C++ files, ...

» Therefore its operations have no semantics

- e.g. looking at changes after doing a renaming a
method refactoring result in a list of textual changes to
potentially many files

e can be hard to know it was a refactoring, especially when
combined when several other changes

e commit often, and add comments !

e It’s a versioning system, but not as you know it ;-)

» Users are meant to be always connected to the
repository

— can work separately but that is the exception

» Works with methods, classes, ...

— Versioning knows about your language concepts

e e.g. have all versions for a particular class, automatically
includes all methods for that version of the class

— Smallest granularity is a method

lmec Y

Envy Workflow

» Load code from repository in local environment
 Work on code.

e Every change of a method or a class automatically (!)
creates an edition

e These editions can be compared with, restored, ...
» Editions can be versioned
e the edition then gets a name and version number

e once versioned everybody in the repository can see and
load versions

e easier and earlier integration and conflict detection

Envy: Configuration Management features

 From the ground up Envy has support for configuration
management

— Applications group classes and methods
e can have editions and versions themselves
e have prerequisite versions (!)
— Configurations group applications
¢ (e.g. Manifests in Microsoft .Net)
— Support for conditional loading and prerequisites

e Platform-specific code, for example

e Can be at application or configuration level

» Removes need for external build systems like cmake, Maven, ...

o distributed version control system

— Breaks the master/slave relationship prevalent in cvs/
svn

e every repository has the complete history

e repositories sync with each other

— Good support for branching and advanced forms of
version management (cherry picking, reverting
changes, ...)

— Like svn/cvs/...: stores text

Git workflow ‘

» Many possibilities

» Can of course do the centralised workflow (as in
centralised approaches like svn/Envy/...)

developer developer

Git workflow

developer Integration-Manager Workflow

public

developer)

developer developer developer
public public public

Dictator and Lieutenants Workflow (/ ())

On granularity...

» With svn/qit/..., you have a history of the files you've
checked in

» With Envy, you have a history of the development
you did

This is fundamentally different !

27

What is Envy doing in Eclipse ?!

006

Compare Java Element with Local History

® Local History of 'Book’

v Y Today (Jul 31, 2006)
D 2:38:39PM
(D 2:36:56 PM

C ®@23337PM

O Java Source Compare

&

Editor Buffer

(D Local History (Jul 31, 2006 2:36:56 PM)

public Book(String auth, String t
author = auth;
title = tit;

}

public String description() {
[return "Book: " + title + ",

}

public Book(String auth, Strir|

author = auth;
title = tit;
}

public String description() {

return title + author;

}
}

() Y < v

28

Concepts in Code Repositories

» Code
» Package

» Configuration

» Packages and Namespaces should be orthogonal

— package contains definitions

— namespaces is a visibility mechanism

Versioning

o All the elements need to be versionable

» Decisions, decisions:
— granularity of version
e |line of code, method, class+methods, package, ...
- forms of version numbers
¢ single number, composed number, alphanumeric

— version numbers versus release numbers

e and their relationships

imec Py

| 30

Concrete example : Menu Framework

Menu

Menultem

4&

Drink

Ingredient

4&

Food [K>—— —

T

Mushroom

T

Cheese

Sashimi

Caesar Salad

Button
Mushroon

Shiitake

Emmental

Grana
Padano

Menu Framework with Visitor

Menu

Menultem

Menultem
Visitor

accept

T

visitDrink
visitFood

JAN

Drink

Food

accept

accept

Language
Printer

Calory
Calculator

Spicyness
Indicator

visitDrink
visitFood

visitDrink
visitFood

visitDrink
visitFood

C++ Files

Drink.cpp
» Files can go—m—an

MenultemVisitor
.cpp

Menultem
Menultem Visitor
Menu [accept VisitDrink
ZF visitFood
AN
Drink Food Language Calory Spicyness
accept accept Printer Calculator Indicator
visitDrink visitDrink visitDrink
visitFood visitFood visitFood
1
Menultem.c i i
PP | LanguagePrinter SplC);(r)lrecs:sIndlca
Food.cpp o .cpp | -Cpp

.cpp

CaloryCalculator

— But decomposition is not the right one

- What if the visitor traversal needs to be changed?

Wuyts Roel

imec |

ted 2007

33

Java Packages

Menu

Menultem

Menultem
Visitor

accept

T

visitDrink
visitFood

JAN

Drink

Food

accept

accept

Language
Printer

Calory
Calculator

Spicyness
Indicator

1

Menultem

visitDrink
visitFood

visitDrink
visitFood

visitDrink
visitFood

1

Visitor

» Packages to regroup classes, storage still in files

» Decomposition still not the right one

— What would be the right decomposition?

. Wuyts Roel
imec i

| 34

Smalltalk class extensions

Menu

» Packages defines classes and/or methods

— Can be different versions, under control of different
people/project/companies

lmec B | 35

Note: declarative packages

» Package systems should support software
engineering and design principles

— e.g. packaging Visitor pattern
» Approaches exist but should become mainstream
- Smalltalk’s class extensions
— C# Partial classes and extension methods
— Java Open Classes (for example in MultiJava)

o PS: or multi-methods in Lisp (and from there other
languages)

imec fcido 2007 | 36

Software-engineering wise ‘

» Important to be able to separate development into
logical, manageable pieces

— e.g. Visitor design pattern
» Each piece should have:

— owners & responsibles

— versions

— dependencies

— post-load and pre-unload statements

lmec | 7

Corollary 1

» Good packages support evolution
— Company can sell parsetree

— Other company can sell visitor for parsetree

» Code repositories and packages should support
flexible forms of packaging code

» Code repositories, packaging & storage are linked

imec s | s

* Design question:

- why is the plug-in mechanism in Eclipse so difficult?

Last but not least ‘

» We discussed granularity

— want to see the development you really did, not the
changes you made

» Nice example: Refactoring Scripts in Eclipse

— Record and replay the refactorings you did

» Why is this practical ?

Saving & Replaying Refactoring Scripts

800 Refactoring

Create Script
Create a refactoring script from the refactoring history.

Select refactorings to save in script:

| B v = LocalHisitory
™ v D Today (Jul 31, 2006)

Rename type 'book.Book' to ‘AbstractBook’

- Original element: 'book.Book'

- Renamed element: 'book.AbstractBook'

- Update references to refactored element

- Update textual occurrences in comments and strinas

Crrint | Aratinn

™ @ 3:01 PM Rename type 'Book’
| ~A (1) 220 DA Danamin e [Ty —
Details: 3 of 3 selected

A
v

7§eile7cft;:||7 » (Deselect All)

41

Conclusion ‘

» Need for supporting Multi-user development
— code repositories with concurrent access
— version support
— (automatic) merge support
— configuration management
» Current systems are quite weak
- svn/qgit/... & files

— proper packaging mechanisms

— watch out for newer offerings

References |

o Subversion: https://subversion.apache.org/

» git: http://git-scm.com/book

* Envy overview: http://stephane.ducasse.free.fr/
FreeBooks/ByExample/36%20-%20Chapter
%2034%20-%20ENVY.pdf

» Envy: Joseph Pelrine, Alan Knight, Adrian Cho,
Mastering ENVY/Developer, Cambridge University
Press, 2001.

o Smalltalk Class Extensions: https://
www.youtube.com/watch?v=VNi_VQMosXQ

: Wuyts Roel
l m e C 2C restriclilz:,dszoo()e; 43

http://git-scm.com/book
http://stephane.ducasse.free.fr/FreeBooks/ByExample/36%20-%20Chapter%2034%20-%20ENVY.pdf
https://www.youtube.com/watch?v=VNi_VQMosXQ

License: Creative Commons 4.0

http://creativecommons.org/licenses/o

You are free to:

Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

if changes were made. You may do so in any reasonable manner, but not in any way that

@ Attribution — You must give appropriate credit, provide a link to the kcense, and indicate
suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

