
Design of Software Systems
(Ontwerp van SoftwareSystemen)
!

7 On Multi-user Development
Tools,Versioning and Packaging of code, their
Relations, the Universe and Everything.

Roel Wuyts
OSS 2014-2015

Wuyts Roel
© imec restricted 2007

Developing Complex Systems

• How do scientific disciplines construct complex
systems ?

2

Architectural Software

3

RF/mW Design & Analog/RFIC Verification

4

Visualization & Manipulation of molecules

5

Computer Science/Engineering…

6

Wuyts Roel
© imec restricted 2007

Corollary

7

• We need to construct systems that are typically more
complex than in other disciplines

– for several reasons

• We have tangible elements to manipulate

– Buildings, circuits and molecules need a representation
that is different than their physical one

!

• Yet lots of developers still seem to prefer basic tools

– yes, emacs is a basic tool...

Eclipse/Netbeans/IntelliJ/… ?

8

Wuyts Roel
© imec restricted 2007

Eclipse...

9

• Eclipse is a decent integrated development
environment

– integrates navigation, editing, unit tests,
refactoring, ...

– was developed by a lot of former Smalltalk people :-)

• But at its core it is file-based (and so are most others)

– So ? Why don’t I like this ?

Wuyts Roel
© imec restricted 2007

Files versus Objects

• Non computer science disciplines:

– Architects work with construction materials&buildings

• So do their tools

– Molecular biologists work with modules

• Environment manipulates molecules

– ...

• We work with objects

– Most tools deal with files ?!

10

Wuyts Roel
© imec restricted 2007

Smalltalk image approach

• The Smalltalk image is a live environment

– consists entirely of objects

– objects are manipulated

• Files are one way of storing objects

– code too, since code are objects

– Databases are another mechanism, or network sockets
or ...

11

Wuyts Roel
© imec restricted 2007

Sidenote on Environments

• Good developers tailor their environment

– So they need to be easily extensible

• emacs: easy

• Smalltalk environments: easy

• Eclipse: possible

• Most environments: hard or not possible

• Always favour an extensible one

– control your tools!

12

Wuyts Roel
© imec restricted 2007

Multi-user Development

• Software engineering is a teamsport ;-)

• Needed

– a code repository that allows multiple users

– integrated versioning

– configuration management

• The language also has packaging mechanisms

– with or without namespaces

• These concepts cross-cut

13

Wuyts Roel
© imec restricted 2007

Code repositories and multiple users

• Need to store code (obviously)

– but preferable also binaries, documentation, tests, ...

• Locking vs. concurrent

– Lock: one user has (part of) code, unlocks when done

– Concurrent (lazy locking): several users can work
simultaneously on the same system

• Centralized vs. Distributed

– Centralized: Only the master repository contains complete
version history

– Distributed: all repositories have complete history

• Support for merging

14

Wuyts Roel
© imec restricted 2007

Merges

• Two-way merge

!

!

!

!

!

!

!

!

• Three-way merge

15

Wuyts Roel
© imec restricted 2007

Example

• One framework,

• instantiated for two different clients,

• each with their own customizations,

• Where there is a stable version,

• and two development branches

– a new version and a brand new one

– one dependent on the customization of the framework
for one particular client

16

Wuyts Roel
© imec restricted 2007

Let’s view two systems

• Concurrent, centralized systems:

– Subversion

– Envy

• Concurrent, distributed system:

– git

!

!

(Many more exist, but svn is archetypical for most
popular tools like cvs/git, and Envy is a contrast)

17

Wuyts Roel
© imec restricted 2007

svn : Subversion

• descendant of cvs (concurrent versioning system)

• Granularity: file

• Users work detached from the repository:

– Load local copy of files from svn server (repository)

– Work on local copy (working directory)

– Commit changed files back to repository

• Loading local copy can be done from the network

18

Wuyts Roel
© imec restricted 2007

svn Workflow

• Check-out code from repository in local environment

• Work on code.

• can at all time see the difference between the current
change and the state when checked-out

• When finished, commit changes back to repository

• can trigger (3-way) merge when repository was
updated in the meantime

19

Wuyts Roel
© imec restricted 2007

Semantics

• svn (like cvs, git, …) versions text

– has no semantics about what text it stores

– works with latex files, C++ files, ...

• Therefore its operations have no semantics

– e.g. looking at changes after doing a renaming a
method refactoring result in a list of textual changes to
potentially many files

• can be hard to know it was a refactoring, especially when
combined when several other changes

• commit often, and add comments !

20

Wuyts Roel
© imec restricted 2007

Envy

• It’s a versioning system, but not as you know it ;-)

• Users are meant to be always connected to the
repository

– can work separately but that is the exception

• Works with methods, classes, ...

– Versioning knows about your language concepts

• e.g. have all versions for a particular class, automatically
includes all methods for that version of the class

– Smallest granularity is a method

21

Wuyts Roel
© imec restricted 2007

Envy Workflow

• Load code from repository in local environment

• Work on code.

• Every change of a method or a class automatically (!)
creates an edition

• These editions can be compared with, restored, …

• Editions can be versioned

• the edition then gets a name and version number

• once versioned everybody in the repository can see and
load versions

• easier and earlier integration and conflict detection

22

Wuyts Roel
© imec restricted 2007

Envy: Configuration Management features

• From the ground up Envy has support for configuration
management

– Applications group classes and methods

• can have editions and versions themselves

• have prerequisite versions (!)

– Configurations group applications

• (e.g. Manifests in Microsoft .Net)

– Support for conditional loading and prerequisites

• Platform-specific code, for example

• Can be at application or configuration level

• Removes need for external build systems like cmake, Maven, …

23

Wuyts Roel
© imec restricted 2007

Git

!

• distributed version control system

– Breaks the master/slave relationship prevalent in cvs/
svn

• every repository has the complete history

• repositories sync with each other

– Good support for branching and advanced forms of
version management (cherry picking, reverting
changes, …)

– Like svn/cvs/…: stores text

24

Wuyts Roel
© imec restricted 2007

Git workflow

• Many possibilities

• Can of course do the centralised workflow (as in
centralised approaches like svn/Envy/…)

25

Wuyts Roel
© imec restricted 2007

Git workflow

26

Integration-Manager Workflow

Dictator and Lieutenants Workflow

Wuyts Roel
© imec restricted 2007

On granularity...

• With svn/git/…, you have a history of the files you’ve
checked in

• With Envy, you have a history of the development
you did

!

This is fundamentally different !

27

What is Envy doing in Eclipse ?!

28

Wuyts Roel
© imec restricted 2007

Concepts in Code Repositories

• Code

• Package

• Configuration

!

• Packages and Namespaces should be orthogonal

– package contains definitions

– namespaces is a visibility mechanism

29

Wuyts Roel
© imec restricted 2007

Versioning

• All the elements need to be versionable

• Decisions, decisions:

– granularity of version

• line of code, method, class+methods, package, ...

– forms of version numbers

• single number, composed number, alphanumeric

– version numbers versus release numbers

• and their relationships

30

Wuyts Roel
© imec restricted 2007

Concrete example : Menu Framework

31

Ingredient

Mushroom Cheese

Button
Mushroon

Shiitake
Grana

Padano
Emmental

Menu MenuItem

FoodDrink

Caesar SaladSashimi

*

Wuyts Roel
© imec restricted 2007

Menu Framework with Visitor

32

Menu
visitDrink

visitFood

MenuItem
Visitor

visitDrink

visitFood

Language
Printer

visitDrink

visitFood

Calory
Calculator

visitDrink

visitFood

Spicyness
Indicator

accept

MenuItem

accept

Drink
accept

Food

Wuyts Roel
© imec restricted 2007

C++ Files

!

!

!

!

!

• Files can go in cvs

– But decomposition is not the right one

– What if the visitor traversal needs to be changed?

33

Menu
visitDrink
visitFood

MenuItem
Visitor

visitDrink
visitFood

Language
Printer

visitDrink
visitFood

Calory
Calculator

visitDrink
visitFood

Spicyness
Indicator

accept
MenuItem

accept
Drink

accept
Food

MenuItem.cpp

Drink.cpp

Food.cpp
LanguagePrinter

.cpp

CaloryCalculator
.cpp

SpicynessIndica
tor.cpp

MenuItemVisitor
.cpp

Wuyts Roel
© imec restricted 2007

Java Packages

!

!

!

!

!

• Packages to regroup classes, storage still in files

• Decomposition still not the right one

– What would be the right decomposition?

34

Menu
visitDrink

visitFood

MenuItem
Visitor

visitDrink

visitFood

Language
Printer

visitDrink

visitFood

Calory
Calculator

visitDrink

visitFood

Spicyness
Indicator

accept

MenuItem

accept

Drink
accept

Food

MenuItem Visitor

Wuyts Roel
© imec restricted 2007

Smalltalk class extensions

!

!

!

!

!

• Packages defines classes and/or methods

– Can be different versions, under control of different
people/project/companies

35

Menu
visitDrink

visitFood

MenuItem
Visitor

visitDrink

visitFood

Language
Printer

visitDrink

visitFood

Calory
Calculator

visitDrink

visitFood

Spicyness
Indicator

accept

MenuItem

accept

Drink
accept

Food

MenuItem Visitor

Wuyts Roel
© imec restricted 2007

Note: declarative packages

• Package systems should support software
engineering and design principles

– e.g. packaging Visitor pattern

• Approaches exist but should become mainstream

– Smalltalk’s class extensions

– C# Partial classes and extension methods

– Java Open Classes (for example in MultiJava)

– …

• PS: or multi-methods in Lisp (and from there other
languages)

36

Wuyts Roel
© imec restricted 2007

Software-engineering wise

• Important to be able to separate development into
logical, manageable pieces

– e.g. Visitor design pattern

• Each piece should have:

– owners & responsibles

– versions

– dependencies

– post-load and pre-unload statements

37

Wuyts Roel
© imec restricted 2007

Corollary

• Good packages support evolution

– Company can sell parsetree

– Other company can sell visitor for parsetree

!

• Code repositories and packages should support
flexible forms of packaging code

!

• Code repositories, packaging & storage are linked

38

Wuyts Roel
© imec restricted 2007

Sidenote

• Design question:

– why is the plug-in mechanism in Eclipse so difficult?

39

Wuyts Roel
© imec restricted 2007

Last but not least

• We discussed granularity

– want to see the development you really did, not the
changes you made

• Nice example: Refactoring Scripts in Eclipse

– Record and replay the refactorings you did

!

• Why is this practical ?

40

Saving & Replaying Refactoring Scripts

41

Wuyts Roel
© imec restricted 2007

Conclusion

42

• Need for supporting Multi-user development

– code repositories with concurrent access

– version support

– (automatic) merge support

– configuration management

• Current systems are quite weak

– svn/git/… & files

– proper packaging mechanisms

– watch out for newer offerings

Wuyts Roel
© imec restricted 2007

References

• Subversion: https://subversion.apache.org/

• git: http://git-scm.com/book

• Envy overview: http://stephane.ducasse.free.fr/
FreeBooks/ByExample/36%20-%20Chapter
%2034%20-%20ENVY.pdf

• Envy: Joseph Pelrine, Alan Knight, Adrian Cho,
Mastering ENVY/Developer, Cambridge University
Press, 2001.

• Smalltalk Class Extensions: https://
www.youtube.com/watch?v=VNi_VQMosXQ

43

http://git-scm.com/book
http://stephane.ducasse.free.fr/FreeBooks/ByExample/36%20-%20Chapter%2034%20-%20ENVY.pdf
https://www.youtube.com/watch?v=VNi_VQMosXQ

Wuyts Roel
© imec restricted 2007

License: Creative Commons 4.0

44

http://creativecommons.org/licenses/by-sa/4.0/

