Design of Software Systems
(Ontwerp van SoftwareSystemen)

5 Unit Testing, Refactoring and Profili

&Jec

A golden rule... |

» Make it Work
» Make it Right

o Make it Fast

How does this work?

» First make sure the software does what you want
— use unit tests

» Then rework the code until it speaks for itself
— use refactorings

» Then optimize the performance, if needed

— use profiling

Testing

Unit Testing test individual components

Module Testing | test a collection of related components

Sub-System Testing | test sub-system interface mismatches

* test interactions between sub-systems
System Testing | ® tests that the complete system fulfils
requirements

Acceptance Testing | test system with real rather than simulated data

l m e C | .restmgg?z%ooe;

Unit Testing

* How can I trust that changes did not destroy
something?

» What is my confidence in the system ?

e How do I write tests?

» What is unit testing?

» Tests represent your trust in the system
* Build them incrementally

— Do not need to focus on everything

- When a new bug shows up: write a test
» Even better: test first!

— Act as your first client

- Helps finding proper interfaces

» Tests are active documentation: they are always in
sync

Talcle - | ¢

Testing Style

» "The style here is to write a few lines of code, then a
test that should run, or even better, to write a test

that won't run, then write the code that will make it
run.”

— write unit tests that thoroughly test a single class

— write tests as you develop (even before you
implement)

— write tests for every new piece of functionality

» "Developers should spend 25-50% of their time
developing tests.”

" - Wuyts Roel
(mec | 7

But I can’t cover anything!

» Sure! Nobody can but:

- When someone discovers a defect in your code, first
write a test that demonstrates the defect.

— Then debug until the test succeeds.

“"Whenever you are tempted to type something
into a print statement or a debugger expression,
write it as a test instead.”

Martin Fowler

Unit Testing ‘

*» Ensure that you get the specified behaviour of the
public interface of a class

— Normally tests a single class
» General setup of a test:

— Create a context,

— Send a stimulus,

— Check the results

imec - | o

Example

public class SaleTest extends TestCase

{

/] ...
public void testMakeLineltem() {

Sale fixture = new Sale();

Money total = new Money(7.5);

Money price = new Money(2.5);

ltemID id = new ItemID(1);

ProductDescription desc = new ProductDescription(id, price, “product 1”);

sale.makeLineltem(desc, 1);
sale.makeLineltem(desc, 2);

assertTrue(sale.getTotal().equals(total));

About Failures and Errors

o A failure is a failed assertion

- i.e., an anticipated problem that you test.

e assertEquals(2, myContainer.nrOfElements())
* An error is a condition you didn’t check for.

— e.g. an exception being thrown you did expect

boolean 1sExceptionThrown = false;

try {
myContainer.get(3);

} catch(IndexOutOfBoundsException e) {
isExceptionThrown = true;

}

assertTrue(isExceptionThrown);

: e Rocl
lm GC "x- dszo%e7 |]

Good Unit Tests |

* Are repeatable
- have to be deterministic to be useful
» Require no human intervention
- so that they can be automated
* Are “self-described” and tell a story
- to serve as documentation

» Change less often than the system

- they encode stable functionality

Designing tests 4

» Build simple tests
» Check that failures are caught
» Run tests frequently (every couple of minutes)

o Test Infrastructure code first, then application-
specific code

» Reuse as much test code as you can (tests are code!)
* Write small tests that test one particular aspect

o Make sure the tests are deterministic

s Wuyts Roel
(mec s | 13

Why spending time testing?

* Find problems soon.

- in context of what you were doing!
* Serve as documentation.
» Ease maintenance and evolution.

- new developers jump in anytime..

» Have something to show all the time.

Testing Frameworks |

» Tests have to be repeatable

* Unit Testing Frameworks implement necessary
infrastructure so that you can set up your tests, run
them frequently, and see the results

e SUnit is “the mother of all unit test frameworks”

— started in Smalltalk

— fanned out to all kinds of other languages

e JUnit, NUnit, CppUnit, ...

: Wuyts Roel
IMecC ke 2007 | 15

JUnit overview

o Junit (inspired by Sunit) is a simple “testing
framework” that provides:

— classes for writing Test Cases and Test Suites

— methods for setting up and cleaning up test data
(“fixtures”)

- methods for making assertions

— textual and graphical tools for running tests

Testing Frameworks

o Key parts
— TestCase: bundles test methods
- Some mechanism to execute test code
(methods, macroes, ...)

— Fixture (= Resource): known set of objects that serves
as a base for a set of test cases

— TestSuite: bundles testcases so that they can be run
together

— TestRunner: runs a testsuite, outputting results

\mec

A testing scenario ‘

» The framework calls the test methods that you define
for your test cases

— You need to declare a TestRunner
- You specify who will gather the results
— You add the needed tests to the runner

— You run the TestRunner

e this automatically runs all tests, collecting the results

— You pass the results to an Outputter

lmec B | s

A testing scenario

» The framework calls the test methods that you define
for your test cases

] :TestRunner | | :TestSuite | | tc:TestCase | |tr:TestResult|
1 | [

! |
1 I
run(tr) : ! |
> run(tr) ! |
> run(te) I
F 1
~ runBare
setUp -
runTest —
>
tearDown el =~ addFailure
Ko, W e | 5
Té __________ - : !

Setup and TearDown

o Executed before and after each test
— setUp allows us to specify and reuse the context

- tearDown makes us clean-up afterwards

#setUp #tearDown

Test method

#zatl) #MearDo #=etl #MaarDo #=atl #MearDo

imec Py

| 20

» Example unit test for an online ordering system

Mocking & Stubbing

» Example unit test for an online ordering system

public class OrderStateTester extends TestCase {

private static String TALISKER = "Talisker";
private static String HIGHLAND PARK = "Highland Park";
private Warehouse warehouse = new WarehouseImpl();

protected void setUp() throws Exception {
warehouse.add (TALISKER, 50);
warehouse.add (HIGHLAND PARK, 25);
}
public void testOrderIsFilledIfEnoughInWarehouse() {
Order order = new Order (TALISKER, 50);
order.fill (warehouse);
assertTrue(order.isFilled());
assertEquals (0, warehouse.getInventory(TALISKER));
}
public void testOrderDoesNotRemoveIfNotEnough() {
Order order = new Order (TALISKER, 51);
order.fill (warehouse);
assertFalse(order.isFilled());
assertEquals (50, warehouse.getInventory(TALISKER));

lmec | »

Mocking & Stubbing

» Example unit test for an online ordering system

public class OrderStateTester extends TestCase {

private static String TALISKER = "Talisker";
private static String HIGHLAND PARK = "Highland Park";

private Warehouse warehouse = new WarehouseImpi€- CO”abOI"atOI"

protected void setUp() throws Exception {
warehouse.add (TALISKER, 50);
warehouse.add (HIGHLAND PARK, 25);

}
public void testOrderIsFilledIfEnoughInWarehouse() {

Order order = new Order (TALISKER, &0 teSted ObjeCt

order.fill (warehouse); “ d "
assertTrue(order.isFilled(system under test

assertEquals (0, warehouse.getIn

ory (TALISKER)) ;

public void testOrderDoesNotRemoveIfNG
Order order = new Order (TALISKER, 51);

order.fill (warehouse); State
assertFalse(order.isFilled (49
assertEquals (50, warehouse.getInventory(TALISKER4)- ve riﬁ Cati on

lmec |

Mocking & Stubbing

» Using mocking (jMock library example)

public class OrderInteractionTester extends MockObjectTestCase {
private static String TALISKER = "Talisker";
public void testFillingRemovesInventoryIfInStock() {

Order order = new Order (TALISKER, 50); Setu D = data

Mock warehouseMock = new Mock(Warehouse.class);

warehouseMock.expects (once()) .method("hasInventorysetu D = eXPeCtationS

.with(eq(TALISKER),eq(50))
.will(returnValue(true));
warehouseMock.expects (once()) .method("remove")
.with(eq(TALISKER), eqg(50))
.after("hasInventory");

order.fill((Warehouse) warehouseMock.proxy()); exe rCise
warehouseMock.verify(); ve rify
assertTrue(order.isFilled());

More info: http://martinfowler.com/articles/mocksArentStubs.html

lmec | oy

http://martinfowler.com/articles/mocksArentStubs.html

Refactorings |

» Refactoring
- What is it?
- Why is it necessary?
— Examples

— Tool support

— Obstacles to refactoring

What is Refactoring?

*» The process of changing a software system in such a
way that it does not alter the external behaviour of
the code, yet improves its internal structure
[Fowl99a]

* A behaviour-preserving source-to-source program
transformation [Robe98a]

* A change to the system that leaves its behaviour
unchanged, but enhances some non-functional
quality - simplicity, flexibility, understandability, ...
[Beck99a]

: Wuyts Roel
l m e C restricl:e):,dszoooe; 26

Typical Refactorings

Class Refactorings Method Refactorings Attribute Refactorings
add h(is:rz)rcclliis o add method to class add variable to class
rename class rename method rename variable
remove class remove method remove variable

push method down push variable down
push method up pull variable up
add parameter to method create accessors
move method to component abstract variable
extract code in new method

Tlcle N | 2

Why Refactoring?

* “Grow, don't build software” (Fred Brooks)

» “Any fool can write code that a computer can
understand. Good programmers write code that
humans can understand.” (Fowler)

» Some argue that good design does not lead to code
needing refactoring ...

: ‘Wuyts Roel
LMmMecC ! ic:stzo%% | 28

Why Refactoring?

o In reality
— Extremely difficult to get the design right the first time
— You cannot fully understand the problem domain
— You cannot fully understand user requirements
— You cannot really plan how the system will evolve

— Original design is often inadequate

- System becomes brittle, difficult to change

Why Refactoring?

» Refactoring helps you to

— Manipulate code in a safe environment

e Behaviour preserving
— Recreate a situation where evolution is possible

— Understand existing code

e Remember: software needs to be maintained

— This is one way to do it safely

Examples of Refactoring Analysis

» Rename Method
— existence of similar methods
— references of method definitions
- references of calls

o AddClass

- simple

— namespace use and static references between class
structure

Rename Method

A
bince() balance()
A X = AR
X |— B D > B D
. bince() bince() balance() | | balance()
Bb=ne;:13(); q Bb=newB();j q
b.blnc(); C b.balance(); C
bince() balance()

imec 2007

| 32

Rename Method: Do It Yourself

o Check if a method does not exist in the class and
superclass/subclasses with the same “name”

*» Browse all the implementers (method definitions)
» Browse all the senders (method invocations)

» Edit and rename all implementers

* Edit and rename all senders

e Remove all implementers

o Test

: Wuyts Roel
(mec - | 33

Rename Method

» Rename Method (method, new name)

* Preconditions

- no method exists with the signature implied by new name in the
inheritance hierarchy that contains method

- [Smalltalk] no methods with same signature as method outside
the inheritance hierarchy of method

- [Java] method is not a constructor
» PostConditions
- method has new name
- relevant methods in the inheritance hierarchy have new name

— invocations of changed method are updated to new name

e Other Considerations

- Typed/Dynamically Typed Languages => Scope of the renaming

Add class

Add Class

* Preconditions

— no class and global variable exists with classname in the same
scope

— subclasses are all subclasses of all superclasses
— [Smalltalk] superclasses must contain one class
— [Smalltalk] superclasses and subclasses cannot be metaclasses

o Postconditions

— new class is added into the hierarchy with superclasses as
superclasses and subclasses as subclasses

— new class has name classname

— subclasses inherit from new class and not anymore from
superclasses

e Considerations: Abstractness

Tlcle B | 3

Tool Support ‘

* Could do refactoring by hand
— see Rename Method example
» But much better if automated
— easier
- safer

» Which tools are needed to support refactoring?

lmec | 7

Tool support for refactoring activities

Change Efficiently Failure Proof

Refactoring Tools Regression Testing
- source-to-source program - Repeating past tests
transformation - requires no user interaction
- behaviour preserving - is deterministic

= Improve Structure = Verify damage to previous work
Development Environment Configuration&Version Management
- Fast edit-compile-run - track different versions

- Integrated in environment - track who did what

= Convenient = can revert to earlier versions

IMmec o 2007 | 38

Conclusion: Tool Support

Note: Do not apply refactoring tools in isolation!

Smalltalk C++ Java
refactoring tools ++ - (7) +
rapid edit-compile-run cycles ++ - +-
reverse engineering facilities +- +- +-
regression testing + + +
version & configuration N N N
management

Refactoring in Eclipse

- /l‘lt
* Answer the "count" field in the BaseScanner class.
»
* @return Field.
»
* Ugly construction, but the class and field are not directly accessible.
*/
= protected static Field getCountFiel(
try { g Undo' ¥z
Class<?> domScannerClass = Revert File
Class<?> baseScanner(Class = Save
_ Field field = baseScannerCl
! field.setAccessible(true); Open Declaration F3
} return field; Open Type Hierarchy F4
catch (NoSuchFieldException ex) Open Call Hierarchy ~XH
//should not happen since I Quick Outline 3¥0 |is declared in class BaseScanner hardcoded above.
AnalysisErrorManager. stop(" Quick Type Hierarchy 98T :ting an inherited private field \"count\", but it -
return null; -
} Show In #EW >
’ Cut %X
T Copy 3#C
= Paste EV
E_L, Problems | @ Javadoc &2 @> Declaration] El co = EDetaiIs] £ SVN Historﬂ ¢ Progress}
Field be.imec.cleanc.cparser.kernel.iImecDOMScanner.get Sorce 3€S > E _
Refactor N#T > Rename... #R
Answer the “count” field in the BaseScanner class. Surround With 87 > Move \RY
Returns:) i Local History > . _
Field. Ugly construction, but the class and field Change Method Signature... " 3C
S Search > Inline... el
Find Bugs > Extract Interface...
Run As > Extract Superclass...
Debug As > Use Supertype Where Possible...
! Team > Pull Up...
— Compare With > Push Down...
Replace With > .
— Introduce Indirection...
L Preferences... Introduce Parameter Object...
D % Remove from Context {+\ 3| Ceneralize Declared Type...

40

When to Refacctor ?

* When you add functionality
— Helps you to understand the code you are modifying.

- Sometimes the existing design does not allow you to easily
add the feature.

» When you need to fix a bug

— If you get a bug report, it's a sign the code needs
refactoring

— because the code was not clear enough for you to see the
bug in the first place

* When you do a code review

— Code reviews help spread knowledge through the
development team.

— Works best with small review groups

imec B | 4

When to Refactor

* You should refactor:
— Any time that you see a better way of doing things

e "Better” means making the code easier to understand and to modify in the
future

— You can do so without breaking the code

e Unit tests are essential for this (remember: do not refactor in isolation)
* You should NOT refactor:
— Stable code (code that won’t ever need to change, code library)
— Someone else’s code

e Unless you've inherited it (and now it's yours) h # XP practice!
e Rule of Thumb: ‘Three strikes and you refactor’
- 1st time: Write from scratch
- 2nd time: Duplication eventually admissible

— 3rd time: Refactor !!!

Example: Switch Statements |

» Switch statements are very rare in properly designed
object-oriented code

- Therefore, a switch statement is a simple and easily
detected “bad smell”

— Of course, not all uses of switch are bad

— A switch statement should NOT be used to distinguish
between various kinds of object

» There are several well-defined refactorings for this
case

— The simplest is the creation of subclasses

I(MmecC ictad 2007

Example: Bad Smell

class Animal {
final int MAMMAL = 0, BIRD = 1, REPTILE = 2;
int myKind; // set in constructor

String getSkin() {
switch (myKind) {
case MAMMAL: return "hair";
case BIRD: return "feathers";
case REPTILE: return "scales";
default: return "integument”;

| 44

Example: Improved

class Animal {
String getSkin() {

return "integument”;

}

class Mammal extends Animal {
String getSkin() {

return "hair"; }

}

class Bird extends Animal {
String getSkin() {

return "feathers";

}

class Reptile extends Animal {
String getSkin() {

return "scales";

Talcle i 45

JUnit Tests

* As we refactor, we need to run (JUnit) tests to ensure that we
haven't introduced errors

public void testGetSkin() {
assertEquals("hair", myMammal.getSkin());
assertEquals("feathers", myBird.getSkin());
assertEquals("scales”, myReptile.getSkin());
assertEquals("integument”, myAnimal.getSkin());

» This should work equally well with either implementation
* The setUp() method of the test fixture may need to be modified

e Re-running unit tests proves that the refactoring succeeded
(= external behavior remained unchanged)

- - Wuyts Roel
I(MeC cted 2007

Refactoring Examples

* Add Parameter

» Change Association

» Change Reference to Value
» Change Value to Reference
e Collapse Hierarchy

e Consolidate Conditional
» Convert Procedures to Objects
e Decompose Conditional
¢ Encapsulate Collection
¢ Encapsulate Downcast

» Encapsulate Field

o Extract Class

Extract Interface
Extract Method
Extract Subclass
Extract Superclass
Form Template Method
Hide Delegate

Hide Method

¢ Inline Class

Inline Temp

Introduce Assertion
Introduce Explain Variable
Introduce Foreign Method

- 72 Refactorings identified by Fowler
Imec]

Wuyts Roel
stricted 2007

47

Refactoring Example: Collapse Hierarchy

» When superclass and subclass are not very different:

Merge them

Employee

AN

—

Employee

Refactoring Example: Consolidate Conditional

» When the same fragment of code is in all branches:

Move it out
double disabilityAmount() double disabilityAmount()
{ {
if (_seniority < 2) return O; © if (isNotEligableForDisability())
if (_monthsDisabled > 12) ‘ re
r // compute the disability amount
if (_isPartTime) return O }

// compute the disability amount

Refactoring Example: Decompose Conditional

» When having a complicated conditional statement:
Extract if/then/else parts

if (date.before (SUMMER_START) || date.after(SUMMER_END))
charge = quantity * _winterRate + _winterServiceCharge;

else

charge = quantity * _summerRate;

¢

if (notSummer(date))
charge = winterCharge (quantity);

else charge = summerCharge (quantity);

lmec B | so

Refactoring Example: Encapsulate Collection

 When a method returns a collection: Provide Read-
only view & add/remove methods

Person Person
getCourses():Set s (L Unmodfiable)Set

(setCourses(:Set)

remove Course(: Course] >
S~~——

| 51

Refactoring Example: Extract Class

» When we have 1 class doing the work that should be
done by 2: Create new class, move fields & methods

- => GRASP High Cohesion

. Person Telephone Numbe|
fame office Telephone
areaCoe
((hceAreaCode hate % — ;
aficeNurber 1
(etTelephone Number
(et elephoneNuber (et TelephoneNuber

s Roel
2007

Talcle | 52

Refactoring Example: Inline Class

» When a class isn't doing very much: Merge with
other class

Person Telephone Number Person
ofice Telephane P——— e
narme < — - areaCode
E num%er g
getTelephoneNumber 1
getTelephoneNumber lldetoreliante

Refactoring Example: Encapsulate Downcast

* When a method returns an object that needs to be
downcasted by its callers:

— Move the downcast to within the method.

— happens often when a class uses a collection or iterator

Object lastReading() { Reading lastReading() {

return readings.lastElement(); return (Rdading) readings.lastElement();
| ‘ |
Reading Reading = Reading lastReading = theSite.lastReading();

(eadlng) theSite.lastReading();
— nea 2007 | 54

Refactoring Example 9: Extract Method

» When we have a code fragment that can be grouped
together: turn the fragment into a method with an

explanative name

void printOwing()
{

printBanner(); void printOwing() {

// print details printBanner();

System.out.printin ("name: " + _name);

printDetails(getOutstanding());
}

System.out.printin ("amount” +

getOutstanding());

imec | ss

Bad Smells in Code

» Duplicated Code o Parallel Inheritance/Interface

» Long Method Hierarchies

 Large Class * Lazy Class

- Long Parameter List » Speculative Generality

» Divergent Change * Temporary Field

e Shotgun Surgery » Message Chains

» Middle Man
e Inappropriate Intimacy

* Feature Envy

o Data Clumps

« Primitive Obsession e Incomplete Library Class

Switch Statements e Data Class

Comments » Refused Bequest

e Alternative Classes with Different
Interfaces

(MecC i 2007 | 56

Bad Smells

e Where did this term come from?

“If it stinks, change it.”
--Grandma Beck

» The basic idea is that there are things in code that cause
problems

— Duplicated code
- Long methods

* But any time you change working code, you run the risk of
breaking it

— A good test suite makes refactoring much easier and safer

» Bad smells gives inspiration, but are not designed as metrics
— You have to decide yourself when something is “too much?”, ...

lmec | s/

Example: Duplicated Code

o If you see the same code structure in more than one
place, find a way to unify them

* "Number one in the stink parade” !!!

» The usual solution is to perform

- ExtractMethod: create a single method from the duplicated
code

- Invoke from all places: Use it wherever needed

- You sometimes need additional refactorings (Add Parameter,

)

* This adds the overhead of method calls, thus the code
could get a bit slower

imec fcido 2007 | 58

Other Bad Smells

* Long Method
— The longer a procedure is, the more difficult it is to understand.

— Solution: perform EXTRACT METHOD or Decompose Conditional or Replace
Temp with Query.

» Large class

— When a class is trying to do too much, it often shows up as too many instance
variables.

— Solution: perform EXTRACT CLASS or EXTRACT SUBCLASS
* Long Parameter List

- In OO, you don't need to pass in everything the method needs.
Instead, you pass enough so the method can get to everything it
needs

— Solution: Use REPLACE PARAMETER WITH METHOD when you can get
the data in one parameter by making a request of an object you
already know about.

Other Bad Smells

» Shotgun Surgery

— This situation occurs when every time you make a kind of change, you have to
make a lot of little changes to a lot of different classes.

— Solution: perform MOVE METHOD/FIELD or INLINE CLASS bring a whole bunch
of behavior together.

* Feature Envy

— A method that seems more interested in a class other than the one it is in.

— Solution: perform MOVE METHOD or EXTRACT METHOD on the jealous bit and
get it home.

Bad Smell/Sweet Smell: Comments

» Fowler says “comments often are used as a deodorant”

— If you need a comment to explain what a block of code does, use Extract
Method

- If you need a comment to explain what a method does, use Rename Method

— If you need to describe the required state of the system, use Introduce
Assertion

» When you feel the need to write a comment, first try to refactor the code
so that any comment becomes superfluous

» The point is that code should be self-explanatory, so that comments are
not necessary

» This should not discourage the use of comments
(especially javadoc comments)

- A comment is a good place to say why you did something

. ts Roel
nlcle | .

Java FindBugs

* The activator class controls the plug-in life cycle

o

—___nubhlir vnid stanfRundlelantext coantexvt) throws Fyvcentinn !

4

public class Activator extends AbstractUIPlugin {

// The plug-in ID
public static final String PLUGIN_ID = "CPP2MSE";

// The shared instance
private static Activator plugin;

/l"‘
* The constructor
*/
public Activator() {
}

/0
* Bsee or‘g..e.é.l.lpse‘ul.plugln.AbsLr‘actUIPlugln#sLar‘L(or‘g.osgl.fr‘amewor‘k‘BundleConLexL)
*/
public void start(BundleContext context) throws Exception {
super.start(context);
plugin = this;|
}

/IO
* (non-Javadoc
* @see org.eclipse.ui.plugin.AbstractUIPlugin#stop(org.osgi. framework.BundleContext)

*/

|@

F——— <« »

(E_t Problems (@ Javadoc (@) Declaration (E Console (@ Search (ﬁ Bug User Annotations (ﬁj Bug Details 23\@ SVN History] e Progress]

High Priority Dodgy
In class be.imec.cpp2mse.ui.plugin.Activator
In method be.imec.cpp2mse.ui.plugin.Activator.start(BundleContext)
Field be.imec.cpp2mse.ui.plugin.Activator.plugin

Write to static field from instance method

This instance method writes to a static field. This is tricky to get correct if multiple instances are being manipulated, and generally bad practice.

Writable Smart Insert 31:23 J

|| 137mof 15am| [

62

Practical information

* When you find you have to add a feature to a program, and the program'’s
code is not structured in a convenient way to add the feature, first refactor
the program to make it easy to add the feature, then add the feature

» Before you start refactoring, check that you have a solid suite of tests. These
tests must be self-checking.

» Make sure all tests are fully automatic and that they check their own results.

* Run your tests frequently. Localize tests whenever you compile—every test at
least every day.

o It is better to write and run incomplete tests than not to run complete tests

» Think of the boundary conditions under which things might go wrong and
concentrate your tests there

» Don't forget to test that exceptions are raised when things are expected to go
wrong

» When you get a bug report, start by writing a unit test that exposes the bug.

» Refactoring changes the programs in small steps. If you make a mistake, it is
easy to find the bug.

: Wuyts Roel
l m e C 2C restriclilz:,dszoo()e; 63

Obstacles to Refactoring

e Performance issue

— “Refactoring will slow down the execution”

e Cultural Issues

- “"We pay you to add new features, not to improve the code!”

o If it doesn’t break, do not fix it

- “*We do not have a problem, this is our software!™

* Development is always under time pressure
— Refactoring takes time
— Refactoring better after delivery

— Process should take it into account, like testing

imec Py

| 64

Conclusion

o Refactoring is just a way of rearranging code
— Refactorings are used to solve problems

— If there’s no problem, you shouldn’t refactor

» The notion of “"bad smells” is a way of helping us recognize
when we have a problem

— Familiarity with bad smells helps us avoid them in the first place
o Refactorings are mostly pretty obvious

— Most of the value in discussing them is just to bring them into our
“conscious toolbox”

— Refactorings have names in order to crystalize the idea and help
us remember it

lmec B | s

Profiling |

e What and how

Performance Myth |

e Don’t think that clean software is slow!

* Normally only 10% of your system consumes 90% of
the resources so just focus on 10 %.

— Refactorings help to localise the part that need change

— Refactorings help to concentrate the optimisations

» Always use a profiler on your “slow” system to guide
your optimisation effort

— Never optimise first!

imec fcido 2007 | 67

Profiling

*» “"Measure the behaviour of a program as it runs”
» Note: can profile different things
— execution speed

- memory usage

Profiling concepts

e How does it work?

— Sampling: gather information from time to time
e | ess accurate

e Less performance overhead

— Code instrumentation: modify program to analyze itself
e Full instrumentation is very exact
e Slower
e Risc for Heisenbugs

e Can be manual, static, dynamic, ...

\mec

Profiler Tools

» Can be integrated in Development Environment
- linked with code: can highlight slow methods, ...

- make profile data understandable and usable

e Can be stand-alone

— no need to get project in IDE just to profile

Example: Java Profiling in Eclipse

» Java profiling can be installed in Eclipse

— Does Memory and Execution Time profiling

e |ocal or remote

& Java - CarModel. java - Eclipse SDK
Fle Edit Refactor Source Navigate Search

We have a Java project to profile...

4]i=1]:3

Projact Run Window Help

‘--" - "-J - ﬁ_ - o - g: - q . ;L“ :*} G v 3 ‘,~ v Q :_j ';lhdwmlu- &me
; ."__ - v
IS Package Explorer 50 - Hierarchy L1)] CarModel.java &2 =
-] v import java.io.BufferecdReader; A

& Profiefroject
= &= ProfiingDemo
= |J CarMedel java
= e CarModel
o man(strng(])
@ simdsteCarUsage(CarMod
© engne
o left
© right
© wheel
& CarModel)
B Gio«:
+ GiEmrn
® @ wheel
& Gi‘ﬂﬂdmN
+ B\ RE System Library [re1.5.0_07)

import java.io.IOExceprion:
import java.i1o.InputStreamReader;

public class SO GLRER (

/T Required car parts: 1 Engine, 4 wheels, and 2 doors 7%/
public Zngine engine = new Engine()’;

public Wheel[] wvheel = new Wheel(4):

public Door left = mew Door (), right = new Door():

public CarlModel()
{
for(int 1 = 0; 1 < 47 1++)
wheal 11 = new Wheal)+

wmmmmmm X% kil #B8-r¢~-=0

<terminated > CarModel [Java Applcation] Java.exe (August 4, 2006 S:21:51 PM)
CarModel started A
Menu:

(1) Simulate car usage
{2y Crears wnraefarancrard nhlacra

72

Profile the main function

'r\’_j A

& ProfieProject
CR= ProfiingDemo
= £ (defauk package)
= |J] CarModel.java
-

& CarModel))

* B\ IRE System Library [jre

CarModel.main(Strir

Open Type Hierarchy
Open Call Hierarchy

Buld Path
Source
Refactor

pxg Import...
1y Export...

References
Dedlarations

Togde Method Breakpoint
Run As
Debug As

A 1Prtlecaserver AHSHILH,

Compare With
Replace With

Restore from Local History,..

I o 5 o

“import java.io.BufferedReader:

F3
F4
Cerl+-Alt+H

Cerl+x
Cerl4+C

Cerl+v
Delete

-~

»
Ak4Shift+s »
AE4+Shift4+T »

»
»
»
»

Exception:
put StreamReader;

yde 1R

Ar parts: 1 Engine, 4 wheels,
engine = new Engine{);
vheel = new Uheel([4]:;
Lft. = new Door({), right = new

=1()

0; i < 4; i+4+)

= now MNheal il -

: -
Console 52 I X % |
lon] java.exe (August 4, 2006 5:21:51 PM)

7] 2 Java Apglication
Ju 3 JUnit Test
54| 4 SWT Appiication

3- Profike....

73

View results in Profiling perspective

& Profiling and Logging - CarModel. java - Eclipse SDK

File Edit Refactor Source Mavigate Search Project Run ‘Window Help

o] . B v % Qg o> R iy g E & Efj’[(fk) Profiling and L... ’g}JJava
Lg {)ﬂ N g 4 __[I = B Q - - A v 7’

|fb Profil... &% il m R % Execution Statistics X) T v fEE’!l (C ™) Q ET s e
= | Execution Statistics - CarModel at rwinbook [PID: 2808] (Filter: Mo filter)

=Package Base Time (sec... Average Base ... Cumulative Tim... Calls
A e = # (default package) A 0.052681 0.000454 A 0.052681 ‘A4 116

2 1 = @ [byte 0.000000 0.000000 0.000000
= [f» CarModel at rwinbo @ [char 0.000000 0.000000 0.000000
=54 <terminated> @ [int 0.000000 0.000000 0.000000
=59 Basic Memo @ [long 0.000000 0.000000 0.000000
&7 Execution T @ [short 0.000000 0.000000 0.000000
@y Method Cor @ [wWheel 0.000000 0.000000 0.000000
@ byte 0.000000 0.000000 0.000000

| o © CarModel | | . 0.003300 %, 0.052681 |1,
@ char 0.000000 0.000000 0.000000

@ & Door y 0.010020 0.000455 A 0.010044 A

(& Engine y 0.001064 0.000076 A 0.001064 A
@ int 0.000000 0.000000 0.000000
@ long 0.000000 0.000000 0.000000
@ short 0.000000 0.000000 0.000000

oo O 0 00 00O

Example: VisualVM (http://visualvm.java.

* monitor and/or sample CPU time and memory
» Easy to use, stand-alone

e See video

Ble Applications Yew Tools Wndow Melp
|
e SE%%
Apphcations X S g & org broadinsttute sting. gatk CommandlineGATK (pid $499) x (4 »|[~]O)
¢ W Local : .
T (— ([Overview rﬁmgw | &l Threads | £3 Sampler | O Profiler |
P & org broadinstitute sting gatk Come T org. broadinstitute.sting.gatk.CommandLineGATK (pid 9«
Remote =
& VM Coredumps Moeitor VlcPu [v] Memery Classes [¥] Threads
& snavshots Uptime: S min 21 sec [Perform GC | i Py —]
cry x | Heap | PermGen X
1oom l\
108
oM
o™ — 2 00
910 Am nre 920 AM e 918 AM .20 AM
B CPU usage B GC actrvty H resp size Wl Used heap
Classes X Threads x
[Tl
2000 1og=£
0 0
¥ 16 AN 319 AM 920 AM 316 AM e 2:20 AM
[4] i I Tl | Tota! loaded classes [Shared loaded classes B Lwve threads B Daemon threads

http://visualvm.java.net/

Other useful tools exist for profiling...

“Scalasca” : spot communication&synchronization
imbalances in MPI programs (http://scalasca.org)

8096 - - -
File Display Topology Help
|Abso|ute ;[IAbsqute ;I |Abso|ute ;I
Metric tree I cCalltree | Flatview | System tree I Box Plot | Topology 0 |
[123.56 Time —1| [@ 1.36 PARALLE | [ECT- Linux Cluste
2.01e6 Visits &+ [0.00 MPI_Init [0.00 ly-1-00
=[] 0 Synchronizations] 0.00 MPI_Comm_rank [Jo0.00 ly-1-01

[0 Point-to-point
7456 Collective
[J 0 Remote Memory Access
& [J 0 Communications
[J 0 Point-to-point
[1.89e5 Sends
[d 1.89e5 Receives

[0.00 MPI_Comm_size
—[] 0.00 MPI_Barrier

— [] 0.00 MPI_Win_create
—[J 0.00 MPI_Win_lock
—[J 0.00 MPI_Win_unlock

— [] 0.00 MPI_Initialized

- [] 0.00 MPI_Comm_group

[J0.00 ly-1-02
[J0.00 ly-1-03
[J0.00 ly-1-04
[J0.00 ly-1-05
[0.69 ly-1-06
[J0.00 ly-1-07
[0.67 ly-1-08

[J o Collective —[J 0.00 MPI_Comm_create [J0.00 ly-1-09
8.79e4 Exchange — [] 0.00 MPI_Finalized [J0.00 ly-1-10
[J 0 As source — [] 0.00 MPI_Group_free [J0.00 ly-1-11
[J 0 As destination — [J 0.00 MPI_Accumulate [J0.00 ly-1-12

[J 0 Remote Memory Access
2.05e4 Puts

- [0.00 MPI_Isend [0 0.00 ly-1-13

2.05e4 Gets

B [J 0 Bytes transferred

&+ [0 Point-to-point
[2.08e8 Sent

&+ [0 Collective

[d 2.08e8 Received

—[J 0.00 MPI_Irecv

— [J 0.00 MPI_Waitall

— [0.00 MPI_Allreduce

— [0.00 MPI_Win_free
—[J 0.00 MPI_Get

[0.00 MPI_Comm_free

B

7+ [] 0.00 MPI_Finalize

[J0.00 ly-1-14
[0 0.00 ly-1-15
[J 0.00 ly-2-00
[J 0.00 ly-2-01
[J 0.00 ly-2-02
[J 0.00 ly-2-03
[J 0.00 ly-2-04

2.18e7 Outgoing

2.18e7 Incoming
[J 0 Remote Memory Access
B [J 0.00 Computational imbalance

[J 0.00 ly-2-05
[J 0.00 ly-2-06
[J 0.00 ly-2-07
[J 0.00 ly-2-08
[J 0.00 ly-2-09
[J 0.00 ly-2-10
[J0.00 ly-2-11

Mlnant ~on

[d 1.36 Underload

Ly il

v
A Ll
1.36 (50.00%) 2.72| (0.00 1.36 (100.00%) 1.36| 0.00 .

Selected "Point~to-p6int" /4

- Wuyts Roel
stricted 2007 | 76

http://scalasca.org

Other useful tools exist for profiling...

“Sniper” : fast hardware simulator for detailed analysis
(http://snipersim.org)

® imbalance-end
imbalance-start

[C) sync-unscheduled

(@ sync-futex

) mem-dram

@ mem-remote

B mem-13

B mem-12

B mem-11d

@ ifetch

@ serial

@ branch

@ issue-port015

@ issue-port5

@ issue-port34

[Jissue-port2

B issue-port1

@ issue-portd

() depend-branch

@ depend-fp

8 depend-int

@ dispatch_width

Wuyts Roel 77
© imec restricted 2007

http://snipersim.org

Step 179. 73 leafs, 524257 particles. AvgRe: 2060016.45
Coren

1: 6/42287/8.08X

See video on course site o e

% 3/14967/2.74%

profile load balancing efficacy per core oveM

5: 3/10028/2.03%

6: 4/12607/2.39%

14 14 1 1 3 3 7 2/12084/2.46%

8 1/0/0.00%

9 3/10404/2.00%

10: 1/12353/2.36%
1: 1/16294/3.11% |
12: 6/18060/3.44%
1% 4/15071/3.08%
14: 6/28123/5.36%
16 3/24015/4.78%
16: 2/15148/2.80%
17: 4/11827 /2288 |
18 4/12787/243%
19 2/5509/1.07%

20: 3/10635/2.01%
21: 2/15039/3.04%
22: 1/8064/1.54%

X /U /ATEX
24: 3/10671/2.02%
20: 2/20363/5.03%
28: 2/1467/3.1% |
2V 4/13470/2.57%

AN /;\ VAV S 4/SR0N/00

20 1328 18723 12 17 11 16144 183 1 20801 29: 6/34103/6.50%

\ /\ A ”T\ /ﬁ\ /T\ 0. c/um/&‘m

20W333 32188 1322ARERTUNANT 31: 3/17068/3.25%

32: 2/ 14209 /2. 2%

Conclusion 1

» Make it Work, Make it Right, Make it Fast
» Unit testing remove fear of making changes
» Refactoring remove fear of making changes

» Profiling tells you where to make performance-
related changes

— focus your effort

imec |

License: Creative Commons 4.0

http://creativecommons.org/licenses/o

You are free to:

Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

if changes were made. You may do so in any reasonable manner, but not in any way that

@ Attribution — You must give appropriate credit, provide a link to the kcense, and indicate
suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

