
Design of Software Systems
(Ontwerp van SoftwareSystemen)
!

2 Basic OO Design

Roel Wuyts
OSS 2014-2015

Wuyts Roel
© imec restricted 2007

The whole course in one slide ?

2

Basic OO Design Principles:
•Minimize Coupling
•Increase Cohesion
•Distribute Responsibilities

Wuyts Roel
© imec restricted 2007

Basic OO Design Principles

3

• No matter whether you use forward engineering or re-
engineering: basic OO Design Principles hold

– Minimize Coupling

– Increase Cohesion

– Distribute Responsibilities

• You should always strife to use and balance these
principles

– they are fairly language- and technology independent

– processes, methodologies, patterns, idioms, ... all try to
help to apply these principles in practice

• It’s still your job to determine the best balance

Wuyts Roel
© imec restricted 2007

4. Low Coupling Pattern

4

Pattern Low Coupling

Problem How to stimulate low independance, reduce impact of change and
increase reuse?

Solution Assign responsibilities such that your design exhibits low coupling.	

Use this principle to evaluate and compare alternatives.

Wuyts Roel
© imec restricted 2007

Low Coupling Pattern

5

n Which design is better?
n Coupling to stable libraries/classes?
n Key principle for evaluating choices

:Register :Sale

:Payment

makePayment() 1:makePayment()

1.1. create()

:Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

:Register
makePayment()

Wuyts Roel
© imec restricted 2007

Low Coupling Pattern

• Coupling is a measure that shows how much a class is dependent on
other classes

• X depends on Y:

– X has attribute of type Y

– X uses a service of Y

– X has method referencing Y (param, local variable)

– X inherits from Y (direct or indirect)

– X implements interface Y

– (X does not compile without Y)

• “evaluative” pattern:

– use it to evaluate alternatives

– try to reduce coupling

Wuyts Roel
© imec restricted 2007

Low Coupling Pattern

• Advantages of low coupling:

– reduce impact of changes (isolation)

– increase understandibility (more self-contained)

– enhance reuse (independance)

• Is not an absolute criterium

– Coupling is always there

– Therefore you will need to make trade-offs !

• Inheritance is strong coupling !!

7

Wuyts Roel
© imec restricted 2007

Low Coupling Pattern: remarks

• Aim for low coupling with all design decisions

• Cannot be decoupled from other patterns

• Learn to draw the line (experience)

– do not pursue low coupling in the extreme

• Bloated and complex active objects doing all the work

• lots of passive objects that act as simple data repositories

– OO Systems are built from connected collaborating
objects

• Coupling with standardized libraries is NOT a problem

• Coupling with unstable elements IS a problem
8

Wuyts Roel
© imec restricted 2007

5. High Cohesion Pattern

9

Pattern High Cohesion

Problem How to retain focus, understandability and control of objects, while
obtaining low coupling?

Solution Assign responsibilities such that the cohesion of an object remains
high. Use this principle to evaluate and compare alternatives.

Wuyts Roel
© imec restricted 2007

High Cohesion Pattern

10

n Cohesion: Object should have strongly related operations or responsibilities
n Reduce fragmentation of responsibilities (complete set of responsibility)
n To be considered in context => register cannot be responsible for all register-related

tasks

:Register :Sale

:Payment

makePayment() 1:makePayment()

1.1. create()

:Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

:Register
makePayment()

Wuyts Roel
© imec restricted 2007

High Cohesion Pattern

nCohesion is a measure that shows how strong responsibilities of a
class are coupled.

n Is an “evaluative” pattern:

¨ use it to evaluate alternatives

¨ aim for maximum cohesion

n (well-bounded behavior)

nCohesie î

¨ number of methods ì (bloated classes)

¨ understandability î
¨ reuse î
¨ maintainability î

Wuyts Roel
© imec restricted 2007

High Cohesion Pattern: remarks

• Aim for high cohesion in each design decision

• degree of collaboration

– Very low cohesion: a class has different responsibilities in widely varying functional domains

• class RDB-RPC-Interface: handles Remote Procedure Calls as well as access to relational databases

– Low cohesion: a class has exclusive responsibility for a complex task in one functional domain.

• class RDBInterface: completely responsible for accessing relational databases

• methods are coupled, but lots and very complex methods

– Average cohesion: a class has exclusive ‘lightweight’ responsibilities from several functional
domains. The domains are logically connected to the class concept, but not which each other

• a class Company that is responsible to manage employees of a company as well as the financials

• occurs often in ‘global system’ classes !!

– High cohesion: a class has limited responsibilities in one functional domain, collaborating with
other classes to fulfill tasks.

• klasse RDBInterface: partially responsible for interacting with relational databases

Wuyts Roel
© imec restricted 2007

Example 1

13

Wuyts Roel
© imec restricted 2007

Why is this bad ?

• Client knows how Provider is implemented

– has to know that it uses an IndirectProvider

• uses the interface of Provider as well as of IndirectProvider

– Client and IndirectProvider are strongly coupled !

• Client has to use them together

• Changing either Provider or IndirectProvider impacts Client

14

Wuyts Roel
© imec restricted 2007

Reducing the Coupling

15

Engine
+ carburator

engine.carburetor.fuelValveOpen = true

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

carburetor.fuelValveOpen = true

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
- fuelValveOpen

+ openFuelValve

carburetor.openFuelValve() fuelValveOpen = true

Step 1

Step 2

Wuyts Roel
© imec restricted 2007

Reducing Coupling impacts the design

• The interfaces of the classes become more clear

– a method ‘speedUp()’ makes perfect sense: cohesion

• Allows for more opportunity for reuse

– A subclass of Engine, “ElectricalEngine”, might not
need a Carburetor at all

• This is transparent for Car

16

Wuyts Roel
© imec restricted 2007

“Law of Demeter”

17

You are only allowed to send messages to:

– yourself (self/this, super)

– an argument passed to you

– an object you create

Each unit should only talk to its friends;  
don't talk to strangers

or, more formally:

Lieberherr, Karl. J. and Holland, I., Assuring good style for object-oriented programs,  
IEEE Software, September 1989, pp 38-48

Wuyts Roel
© imec restricted 2007

Example 2

18

void CVideoAppUi::HandleCommandL(TInt aCommand)	
 {	
 switch (aCommand)	
 {	
	 case EAknSoftkeyExit:	
 case EAknSoftkeyBack:	
 case EEikCmdExit:	
 { Exit(); break; }	
 	
	 // Play command is selected	
	 case EVideoCmdAppPlay:	
 	 	 { DoPlayL(); break; }	 !
 // Stop command is selected	
	 case EVideoCmdAppStop:	
 	 	 { DoStopL(); break; }	
 	
 // Pause command is selected	
	 case EVideoCmdAppPause:
	 	 { DoPauseL(); break; }	 !
	 // DocPlay command is selected	
	 case EVideoCmdAppDocPlay:
	 	 { DoDocPlayL(); break; }	 !
 // File info command is selected
	 	 case EVideoCmdAppDocFileInfo:	
	 { DoGetFileInfoL(); break; }	
......

Nokia S60 mobile video player 3gpp source code	

http://www.codeforge.com/article/192637

http://www.codeforge.com/read/192637/VideoAppUi.cpp__html

Wuyts Roel
© imec restricted 2007

Why is this bad ?

• Case (switch) statements in OO code are a sign of a
bad design

– lack of polymorphism: procedural way to implement a
choice between alternatives

– hardcodes choices in switches, typically scattered in
several places

• when the system evolves these places have to be updated, but
are easy to miss

19

See also: Replace Conditional with Polymorphism (http://sourcemaking.com/
refactoring/replace-conditional-with-polymorphism)

http://sourcemaking.com/refactoring/replace-conditional-with-polymorphism

Wuyts Roel
© imec restricted 2007

Solution: Replace case by Polymorphism

20

void CVideoAppUi::HandleCommandL(Command aCommand)	
 {
	 aCommand.execute();
	 }	
!
!
Create a Command class hierarchy, consisting of a (probably) abstract class
AbstractCommand, and subclasses for every command supported. Implement execute on each
of these classes:	
!

virtual void AbstractCommand::execute() = 0;	
!

virtual void PlayCommand::execute() { ... do play command ...};
!
virtual void StopCommand::execute() { ... do stop command ...};	

!
virtual void PauseCommand::execute() { ... do pause command ...};	

!
virtual void DocPlayCommand::execute() { ... do docplay command ...};	

!
virtual void FileInfoCommand::execute() { ... do file info command ...};	

!

Wuyts Roel
© imec restricted 2007

Added advantage

• These case statements occur wherever the command
integer is used in the original implementation

– you will quickly assemble a whole set of useful
methods for these commands

– Moreover, commands are then full-featured classes so
they can share code, be extended easily without
impacting the client, ...

– They can also be used when adding more advanced
functionalities such as undo etc.

• Have you noticed that the methods are shorter ?

• Open question: can you think of disadvantages ?

21

Wuyts Roel
© imec restricted 2007

Stepping Back

• Showed concrete examples (and solutions) of
breaches of basic OO design principles visible in code

– Fixing them improved the design!

• Question: how can we avoid this ?

– be cautious ;-)

– get help by applying:

• Design principles and methodologies

– eg.: Responsibility Driven Design

• GRASP patterns, Design Patterns

• Idioms and Programming Practices

22

Wuyts Roel
© imec restricted 2007

Responsibility Driven Design

• Metaphor – can compare to people

– Objects have responsibilities

– Objects collaborate

– Similar to how we conceive of people

• In RDD we ask questions like

– What are the responsibilities of this object

– Which roles does the object play

– Who does it collaborate with

• Domain model

– classes do NOT have responsibilities!

– they merely represent concepts + relations

– design is about realizing the software è someone has to do the work … who ??

Understanding
Responsibilities is

key to good OO
Design

http://www.wirfs-brock.com/PDFs/Responsibility-Driven.pdf

Wuyts Roel
© imec restricted 2007

RDD Process

• Design = incremental journey of discovery and
refinement

– build knowledge to take proper decisions

– start by looking for classes of key objects

• can use the domain model for inspiration !

– then think about what actions must be accomplished, and
who will accomplish them - how to accomplish them is for
later !

• Leads to responsibilities

24

Wuyts Roel
© imec restricted 2007

Responsibilities

• Two types of responsibilities

– Doing

• Doing something itself (e.g. creating an object, doing a
calculation)

• Initiating action in other objects

• Controlling and coordinating activities in other objects

– Knowing

• Knowing about private encapsulated data

• Knowing about related objects

• Knowing about things it can derive or calculate

Wuyts Roel
© imec restricted 2007

Object Collaboration

• Objects collaborate: one object will request
something from another object

• To find collaborations answer the following questions:

– What other objects need this result or knowledge?

– Is this object capable of fulfilling this responsibility
itself?

– If not, from what other objects can or should it acquire
what it needs?

26

Cfr: Coupling and Cohesion

Wuyts Roel
© imec restricted 2007

• Responsibility Driven Design Example:

– Game of Tic Tac Toe (“three in a row”)

– Source: Prof. Dr. Oscar Nierstrasz (University of Bern,
Switzerland) (creative commons license 2.5)

27

P2 — Iterative Development

28

Example: Tic Tac Toe

Requirements:!
!

“A simple game in which one player marks down only
crosses and another only ciphers [zeroes], each
alternating in filling in marks in any of the nine
compartments of a figure formed by two vertical lines
crossed by two horizontal lines, the winner being the first
to fill in three of his marks in any row or diagonal.” !

! — Random House Dictionary!
!

We should design a program that implements the rules of Tic
Tac Toe.

© O. Nierstrasz

P2 — Iterative Development

29

Setting Scope

Questions:!
> Should we support other games?!
> Should there be a graphical UI?!
> Should games run on a network? Through a browser?!
> Can games be saved and restored?!
A monolithic paper design is bound to be wrong!!
!
An iterative development strategy:!
> limit initial scope to the minimal requirements that are interesting!
> grow the system by adding features and test cases!
> let the design emerge by refactoring roles and responsibilities!
!
✎ How much functionality should you deliver in the first version of a system?!
✔ Select the minimal requirements that provide value to the client.

© O. Nierstrasz

P2 — Iterative Development

30

Roadmap

> TicTacToe example!
— Identifying objects!
— Scenarios!
— Test-first development!
— Printing object state!
— Testing scenarios!
— Representing responsibilities as contracts

© O. Nierstrasz

P2 — Iterative Development

31

Tic Tac Toe Objects

Some objects can be identified from the requirements:

Objects Responsibilities
Game Maintain game rules

Player
Make moves!
Mediate user interaction

Compartment Record marks
Figure (State) Maintain game state

!
Entities with clear responsibilities are more likely to end up as
objects in our design.

© O. Nierstrasz

P2 — Iterative Development

32

Tic Tac Toe Objects ...

Others can be eliminated:
Non-Objects Justification

Crosses, ciphers Same as Marks
Marks Value of Compartment

Vertical lines Display of State
Horizontal lines ditto

Winner State of Player
Row View of State

Diagonal ditto
!
✎How can you tell when you have the “right” set of objects?!
✔Each object has a clear and natural set of responsibilities.

© O. Nierstrasz

P2 — Iterative Development

33

Missing Objects

Now we check if there are unassigned responsibilities:!
> Who starts the Game?!
> Who is responsible for displaying the Game state?!
> How do Players know when the Game is over?!
Let us introduce a Driver that supervises the Game.!
!
✎ How can you tell if there are objects missing in your

design?!
✔ When there are responsibilities left unassigned.

© O. Nierstrasz

P2 — Iterative Development

34

Roadmap

> TicTacToe example!
— Identifying objects!
— Scenarios!
— Test-first development!
— Printing object state!
— Testing scenarios!
— Representing responsibilities as contracts

© O. Nierstrasz

P2 — Iterative Development

35

Scenarios

A scenario describes a typical sequence of interactions:

Are there other equally valid scenarios for this problem?

© O. Nierstrasz

P2 — Iterative Development

36

Version 0 — skeleton

Our first version does very little!!
!
!
!
!
!
!
!
!
✎ How do you iteratively “grow” a program?!
✔ Always have a running version of your program.

class GameDriver {!
! static public void main(String args[]) {!
! ! TicTacToe game = new TicTacToe();!
! ! do { System.out.print(game); }!
! ! while(game.notOver());!
! }!
public class TicTacToe {!
 ! public boolean notOver() { return false; }!
! public String toString() { return("TicTacToe\n");}!
}

© O. Nierstrasz

P2 — Iterative Development

37

Roadmap

> TicTacToe example!
— Identifying objects!
— Scenarios!
— Test-first development!
— Printing object state!
— Testing scenarios!
— Representing responsibilities as contracts

© O. Nierstrasz

P2 — Iterative Development

38

Version 1 — game state

> We will use chess notation to access the game state!
— Columns ‘a’ through ‘c’!
— Rows ‘1’ through ‘3’!
!

✎ How do we decide on the right interface?!
✔ First write some tests!

© O. Nierstrasz

P2 — Iterative Development

39

Test-first development

public class TicTacToeTest {!
! private TicTacToe game;!

!
! @Before public void setUp() {!
! ! super.setUp();!
! ! game = new TicTacToe();!
! }!
! !
! @Test public void testState() {!
! ! assertTrue(game.get('a','1') == ' ');!
! ! assertTrue(game.get('c','3') == ' ');!
! ! game.set('c','3','X');!
! ! assertTrue(game.get('c','3') == 'X');!
! ! game.set('c','3',' ');!
! ! assertTrue(game.get('c','3') == ' ');!
! ! assertFalse(game.inRange('d','4'));!
! }!
}

© O. Nierstrasz

P2 — Iterative Development

40

Generating methods

Test-first programming can drive the development of
the class interface …

© O. Nierstrasz

P2 — Iterative Development

41

Roadmap

> TicTacToe example!
— Identifying objects!
— Scenarios!
— Test-first development!
— Printing object state!
— Testing scenarios!
— Representing responsibilities as contracts

© O. Nierstrasz

P2 — Iterative Development

42

Representing game state

public class TicTacToe {!
! private char[][] gameState;!
! public TicTacToe() {!
! ! gameState = new char[3][3];!
! ! for (char col='a'; col <='c'; col++)!
! ! ! for (char row='1'; row<='3'; row++)!
! ! ! ! this.set(col,row,' ');!
! }!
...

© O. Nierstrasz

P2 — Iterative Development

43

Checking pre-conditions

set() and get() translate from chess notation to array indices.

public void set(char col, char row, char mark) {!
! assert(inRange(col, row)); !// NB: precondition!
! gameState[col-'a'][row-'1'] = mark;!
}!
public char get(char col, char row) {!
! assert(inRange(col, row));!
! return gameState[col-'a'][row-'1'];!
}!
public boolean inRange(char col, char row) {!
! return (('a'<=col) && (col<='c')!
! ! && ('1'<=row) && (row<='3'));!
}

© O. Nierstrasz

P2 — Iterative Development

44

Printing the State

By re-implementing TicTacToe.toString(), we can view
the state of the game:!

!
!
!
!
!
!
!
!
✎ How do you make an object printable?!
✔ Override Object.toString()

3 | | !
 ---+---+---!
2 | | !
 ---+---+---!
1 | | !
 a b c

© O. Nierstrasz

P2 — Iterative Development

45

TicTacToe.toString()

Use a StringBuilder (not a String) to build up the
representation:

public String toString() {!
! StringBuffer rep = new StringBuilder();!
! for (char row='3'; row>='1'; row--) {!
! ! rep.append(row);!
! ! rep.append(" ");!
! ! for (char col='a'; col <='c'; col++) { ... }!
! ! ...!
! }!
! rep.append(" a b c\n");!
! return(rep.toString());!
}

© O. Nierstrasz

P2 — Iterative Development

46

Roadmap

> TicTacToe example!
— Identifying objects!
— Scenarios!
— Test-first development!
— Printing object state!
— Testing scenarios!
— Representing responsibilities as contracts

© O. Nierstrasz

P2 — Iterative Development

47

Version 2 — adding game logic

We will:!
> Add test scenarios!
> Add Player class!
> Add methods to make moves, test for winning

© O. Nierstrasz

P2 — Iterative Development

48

Refining the interactions

Updating the Game
and printing it
should be separate
operations.!
The Game should
ask the Player to
make a move, and
then the Player will
attempt to do so.

We will want both real and test Players, so the Driver should
create them.

© O. Nierstrasz

P2 — Iterative Development

49

Testing scenarios

Our test scenarios will play and test scripted games

@Test public void testXWinDiagonal() {!
! checkGame("a1\nb2\nc3\n", "b1\nc1\n", "X", 4);!
}!
// more tests …!
!
public void checkGame(String Xmoves, String Omoves,!
! ! String winner, int squaresLeft) {!
! Player X = new Player('X', Xmoves);!// a scripted player!
! Player O = new Player('O', Omoves);!
! TicTacToe game = new TicTacToe(X, O);!
! GameDriver.playGame(game);!
! assertTrue(game.winner().name().equals(winner));!
! assertTrue(game.squaresLeft() == squaresLeft);!
}

© O. Nierstrasz

P2 — Iterative Development

50

Running the test cases

Player O moves: O at c1!
3 | | !
 ---+---+---!
2 | X | !
 ---+---+---!
1 X | O | O!
 a b c!
Player X moves: X at c3!
3 | | X!
 ---+---+---!
2 | X | !
 ---+---+---!
1 X | O | O!
 a b c!
game over!

!
3 | | !
 ---+---+---!
2 | | !
 ---+---+---!
1 | | !
 a b c!
Player X moves: X at a1!
3 | | !
 ---+---+---!
2 | | !
 ---+---+---!
1 X | | !
 a b c!
...

© O. Nierstrasz

P2 — Iterative Development

51

The Player

We use different constructors to make real or test Players:!
!
!
!
!
A real player reads from the standard input stream:!
!
!
!
!
!
!
This constructor just calls another one ...!
...

public class Player {!
! private final char mark;!
! private final BufferedReader in;

! public Player(char mark) {!
! ! this(mark, new BufferedReader(!
! ! ! ! new InputStreamReader(System.in)!
! !));!
! }

© O. Nierstrasz

P2 — Iterative Development

52

Player constructors ...

But a Player can be constructed that reads its moves from any input
buffer:!
!
!
!
!
!
This constructor is not intended to be called directly.!
...

! protected Player(char initMark, BufferedReader initIn) {!
! ! ! mark = initMark;!
! ! ! in = initIn;!
! }

© O. Nierstrasz

P2 — Iterative Development

53

Player constructors ...

A test Player gets its input from a String buffer:!
!
!
!
!
!
!
The default constructor returns a dummy Player representing “nobody”

! public Player(char mark, String moves) {!
! ! this(mark, new BufferedReader(!
! ! ! ! new StringReader(moves)! ! ! ! ! !
! !));!
! }

! public Player() { this(' '); }

© O. Nierstrasz

P2 — Iterative Development

54

Roadmap

> TicTacToe example!
— Identifying objects!
— Scenarios!
— Test-first development!
— Printing object state!
— Testing scenarios!
— Representing responsibilities as contracts

© O. Nierstrasz

P2 — Iterative Development

55

Tic Tac Toe Contracts

Explicit invariants:!
> turn (current player) is either X or O!
> X and O swap turns (turn never equals previous turn)!
> game state is 3×3 array marked X, O or blank!
> winner is X or O iff winner has three in a row!
!
Implicit invariants:!
> initially winner is nobody; initially it is the turn of X!
> game is over when all squares are occupied, or there is a winner!
> a player cannot mark a square that is already marked!
!
Contracts:!
> the current player may make a move, if the invariants are respected

© O. Nierstrasz

P2 — Iterative Development

56

Encoding the contract

We must introduce state variables to implement the contracts

public class TicTacToe {!
! static final int X = 0;! ! ! ! ! ! // constants!
! static final int O = 1;!
! private char[][] gameState;!
! private Player winner = new Player();! // = nobody!
! private Player[] player;!
! private int turn = X;! ! ! ! ! ! ! // initial turn !
! private int squaresLeft = 9;!
...

© O. Nierstrasz

P2 — Iterative Development

57

Supporting test Players

The Game no longer instantiates the Players, but accepts
them as constructor arguments:

! public TicTacToe(Player playerX, Player playerO)!
! {! // ...! ! !
! ! player = new Player[2];!
! ! player[X] = playerX;!
! ! player[O] = playerO;!
! }

© O. Nierstrasz

P2 — Iterative Development

58

Invariants

These conditions may seem obvious, which is exactly why
they should be checked ...!
!
!
!
!
!
!
!
!
Assertions and tests often tell us what methods should be
implemented, and whether they should be public or private.

private boolean invariant() {!
! return (turn == X || turn == O)!
! ! && (this.notOver() !
! ! ! || this.winner() == player[X]!
! ! ! || this.winner() == player[O]!
! ! ! || this.winner().isNobody())!
! ! && (squaresLeft < 9!! ! ! // else, initially:!
! ! ! || turn == X && this.winner().isNobody());!
}

© O. Nierstrasz

P2 — Iterative Development

59

Delegating Responsibilities

When Driver updates the Game, the Game just asks the
Player to make a move:!
!
!
!
!
!
Note that the Driver may not do this directly!!
!
...

! public void update() throws IOException {!
! ! player[turn].move(this);!
! }

© O. Nierstrasz

P2 — Iterative Development

60

Delegating Responsibilities ...

The Player, in turn, calls the Game’s move() method:

! public void move(char col, char row, char mark) {!
! ! assert(notOver());!
! ! assert(inRange(col, row));!
! ! assert(get(col, row) == ' ');!
! ! System.out.println(mark + " at " + col + row);!
! ! this.set(col, row, mark);!
! ! this.squaresLeft--;!
! ! this.swapTurn();!
! ! this.checkWinner();!
! ! assert(invariant());!
! }

© O. Nierstrasz

P2 — Iterative Development

61

Small Methods

Introduce methods that make the intent of your code clear.!
!
!
!
!
!
!
!
!
!
Well-named variables and methods typically eliminate the
need for explanatory comments!

public boolean notOver() {!
! return this.winner().isNobody()!
! ! ! ! ! && this.squaresLeft() > 0;!
}!
private void swapTurn() {!
! turn = (turn == X) ? O : X;!
}

© O. Nierstrasz

P2 — Iterative Development

62

Accessor Methods

Accessor methods protect clients from changes in
implementation:!

!
!
!
!
!
!
✎ When should instance variables be public?!
✔ Almost never! Declare public accessor methods instead.

public Player winner() {!
! return winner;!
}!
public int squaresLeft() {!
! return this.squaresLeft;!
}

© O. Nierstrasz

P2 — Iterative Development

63

getters and setters in Java

Accessors in Java are known as “getters” and “setters”. !
— Accessors for a variable x should normally be called getx() and

setx()!
!

Frameworks such as EJB depend on this convention!

© O. Nierstrasz

P2 — Iterative Development

64

Code Smells —
TicTacToe.checkWinner()

✎ Duplicated code stinks!  
How can we clean it up?

! for (char col='a'; col <='c'; col++) {!
! ! player = this.get(col,'1');!
! ! if (player == this.get(col,'2')!
! ! ! && player == this.get(col,'3')) {!
! ! ! this.setWinner(player);!
! ! ! return;!
! ! }!
! }!
! player = this.get('b','2');!
! if (player == this.get('a','1')!
! ! && player == this.get('c','3')) {!
! ! ! this.setWinner(player);!
! ! ! return;!
! }!
! if (player == this.get('a','3')!
! ! && player == this.get('c','1')) {!
! ! ! this.setWinner(player);!
! ! ! return;!
! }!
}

private void checkWinner()!
! {!
! char player;!
! for (char row='3'; row>='1'; row--) {!
! ! player = this.get('a',row);!
! ! if (player == this.get('b',row)!
! ! ! && player == this.get('c',row)) {!
! ! ! this.setWinner(player);!
! ! ! return;!
! ! }!
! }

© O. Nierstrasz

P2 — Iterative Development

65

GameDriver

In order to run test games, we separated Player instantiation from Game
playing:!

!
!
!
!
!
!
!
!
!
✎How can we make test scenarios play silently?

public class GameDriver {!
! public static void main(String args[]) {!
! ! try {!
! ! ! Player X = new Player('X');!
! ! ! Player O = new Player('O');!
! ! ! TicTacToe game = new TicTacToe(X, O);!
! ! ! playGame(game);!
! ! } catch (AssertionException err) {!
! ! ! ...!
! ! }!
! }

© O. Nierstrasz

Wuyts Roel
© imec restricted 2007

Patterns

66

Wuyts Roel
© imec restricted 2007 67

• Christoffer Alexander

– “The Timeless Way of Building”, Christoffer Alexander,
Oxford University Press, 1979, ISBN 0195024028

– Structure of the book is magnificent

• Christmass is close ;-)

• More advanced than what computer science uses

– only the simple parts got mainstream

Bit of history...

Wuyts Roel
© imec restricted 2007

Alexander’s patterns

• “Each pattern describes a problem which occurs over
and over again in our environment, and then
describes the core of the solution to that problem, in
such a way that you can use this solution a million
times over, without doing it the same way twice”

– Alexander uses this as part of the solution to capture
the “quality without a name”

68

Wuyts Roel
© imec restricted 2007

Illustrating Recurring Patterns...

69

Wuyts Roel
© imec restricted 2007 70

• Pattern name
– Increase of design vocabulary

• Problem description
– When to apply it, in what context to use it

• Solution description (generic !)
– The elements that make up the design, their

relationships, responsibilities, and collaborations

• Consequences
– Results and trade-offs of applying the pattern

Essential Elements in a Pattern

Wuyts Roel
© imec restricted 2007

GRASP Patterns

• guiding principles to help us assign responsibilities
• GRASP “Patterns” – guidelines

• Controller

• Creator

• Information Expert

• Low Coupling

• High Cohesion

• Polymorphism

• Pure Fabrication

• Indirection

• Protected Variations

Hs 17

Hs 25

Wuyts Roel
© imec restricted 2007

4. Low Coupling Pattern

72

Pattern Low Coupling

Problem How to stimulate low independance, reduce impact of change and
increase reuse?

Solution Assign responsibilities such that your design exhibits low coupling.	

Use this principle to evaluate and compare alternatives.

Wuyts Roel
© imec restricted 2007

Low Coupling Patroon

73

n Which design is better?
n Coupling to stable libraries/classes?
n Key principle for evaluating choices

:Register :Sale

:Payment

makePayment() 1:makePayment()

1.1. create()

:Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

:Register
makePayment()

Wuyts Roel
© imec restricted 2007

Low Coupling Patroon

• Coupling is a measure that shows how much a class is dependent on
other classes

• X depends on Y:

– X has attribute of type Y

– X uses a service of Y

– X has method referencing Y (param, local variable)

– X inherits from Y (direct or indirect)

– X implements interface Y

– (X does not compile without Y)

• “evaluative” pattern:

– use it to evaluate alternatives

– try to reduce coupling

Wuyts Roel
© imec restricted 2007

Low Coupling Pattern

• Advantages of low coupling:

– reduce impact of changes (isolation)

– increase understandibility (more self-contained)

– enhance reuse (independance)

• Is not an absolute criterium

– Coupling is always there

• Inheritance is strong coupling !!

75

Wuyts Roel
© imec restricted 2007

Low Coupling Patroon: remarks

• Aim for low coupling with all design decisions

• Cannot be decoupled from other patterns

• Learn to draw the line (experience)

– do not pursue low coupling in the extreme

• Bloated and complex active objects doing all the work

• lots of passive objects that act as simple data repositories

– OO Systems are built from connected collaborating
objects

• Coupling with standardized libraries is NOT a problem

• Coupling with unstable elements IS a problem
76

Wuyts Roel
© imec restricted 2007

5. High Cohesion Pattern

77

Pattern High Cohesion

Problem How to retain focus, understandability and control of objects, while
obtaining low coupling?

Solution Assign responsibilities such that the cohesion of an object remains
high. Use this principle to evaluate and compare alternatives.

Wuyts Roel
© imec restricted 2007

High Cohesion Patroon

78

n Cohesion: Object should have strongly related operations or responsibilities
n Reduce fragmentation of responsibilities (complete set of responsibility)
n To be considered in context => register cannot be responsible for all register-related

tasks

:Register :Sale

:Payment

makePayment() 1:makePayment()

1.1. create()

:Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

:Register
makePayment()

Wuyts Roel
© imec restricted 2007

High Cohesion Patroon

nCohesion is a measure that shows how strong responsibilities of a
class are coupled.

n Is an “evaluative” pattern:

¨ use it to evaluate alternatives

¨ aim for maximum cohesion

n (well-bounded behavior)

nCohesie î

¨ number of methods ì (bloated classes)

¨ understandability î
¨ reuse î
¨ maintainability î

Wuyts Roel
© imec restricted 2007

High Cohesion Pattern: remarks

• Aim for high cohesion in each design decision

• degree of collaboration

– Very low cohesion: a class has different responsibilities in widely varying functional domains

• class RDB-RPC-Interface: handles Remote Procedure Calls as well as access to relational databases

– Low cohesion: a class has exclusive responsibility for a complex task in one functional domain.

• class RDBInterface: completely responsible for accessing relational databases

• methods are coupled, but lots and very complex methods

– Average cohesion: a class has exclusive ‘lightweight’ responsibilities from several functional
domains. The domains are logically connected to the class concept, but not which each other

• a class Company that is responsible to manage employees of a company as well as the financials

• occurs often in ‘global system’ classes !!

– High cohesion: a class has limited responsibilities in one functional domain, collaborating with
other classes to fulfill tasks.

• klasse RDBInterface: partially responsible for interacting with relational databases

Wuyts Roel
© imec restricted 2007

1. Controller Pattern

• Who is responsible for handling Systemoperations ?

81

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

???

Cashier

:SaleJFrame

presses button

onEnterItem()

1: enterItem(itemID, qty)

Presentation Layer
(Java applet)

Domain Layer

event

♦

systemoperation

♦

controller

Wuyts Roel
© imec restricted 2007

Controller Pattern

82

Pattern Controller

Problem Who is responsible for handling system events ?

Solution Assign the responsibility to a class C representing one of the
following choices:	

• C is a facade controller: it represents the overall system, a root
object, the device that runs the software, or a major subsystem.	

• C is a use case or session controller: it represents an artificial
objects (see Pure Fabrication pattern) that handles all events from
a use case or session

Wuyts Roel
© imec restricted 2007

System operations and System events

• From analysis to design:

– Analysis: can group system operations in a conceptual
“System” class

– Design: give responsibility for processing system
operations to controller classes

• Controller classes are not part of the User Interface

• Model-View-Controller (MVC)

83

Wuyts Roel
© imec restricted 2007

Who controls System events?

enterItem(UPC, quantity)

:SystemCashier

endSale()

makePayment(amount)

:POSSystem
enterItem(upc, quantity)

:Store
enterItem(upc, quantity)

:ProcessSaleHandler
enterItem(upc, quantity)

overall system

root object

artificial object

:RegisterDevice
enterItem(upc, quantity)

device

choice depends
on other factors

Wuyts Roel
© imec restricted 2007

Controller Pattern: Guidelines

• Limit the responsibility to “control and coordination”

– Controller = delegation pattern

 delegate real work to real objects

– Common mistake: fat controllers with too much
behavior

• Only support a limited number of events in Facade
controllers

85

Wuyts Roel
© imec restricted 2007

Controller Pattern: Use Case Controller Guidelines

• Use Case (UC) controllers

– consider when too much coupling and not enough
cohesion in other controllers (factor system events)

– Treat all UC events in the same controller class

– Allow control on the order of events

– Keep information on state of UC (statefull session)

86

Wuyts Roel
© imec restricted 2007

Controller Pattern: Problems and Solutions

• “Bloated” controllers

– symptoms

• a single controller handling all system events

• controller not delegating work

• controller with many attributes, with system information, with
duplicated information

– solutions

• add Use Case controllers

• design controllers that delegate tasks

Wuyts Roel
© imec restricted 2007

Controller Pattern: Advantages

• Increased potential for reuse

• domain-level processes handled by domain layer

• decouple GUI from domain level !

• Different GUI or different ways to access the domain level

• Reason about the state of the use case

• guarantee sequence of system operations

Wuyts Roel
© imec restricted 2007

Example

89

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

:POST

Cashier

:POSTApplet

presses button

onEnterItem()

1: enterItem(upc, qty)

:Sale1.1: makeLineItem(upc, qty)

Presentation Layer
(Java applet)

Domain Layer

♦

♦

event

system operation

controller

makeLineItem(upc, qty)

To Avoid!

Controller  
Pattern

Wuyts Roel
© imec restricted 2007

2. Creator Pattern

90

Pattern Creator

Problem Who is responsible for creating instances of classes ?

Solution Assign a class B to create instances of a class A if:	

• B is a composite of A objects (composition/aggregation)	

• B contains A objects (contains)	

• B holds instances of A objects (records)	

• B closely collaborates with A objects	

• B has the information needed for creating A objects

Wuyts Roel
© imec restricted 2007

Creator Pattern: example

Creation of “SalesLineItem” instances

:SalesLineItem

Sales
LineItem

quantity

Product
Specification

description
price
UPC

Described-by
*

Contains

1..*

Sale

date
time

total()

1: create(quantity)

:Sale
makeLineItem(quantity)

makeLineItem()

Wuyts Roel
© imec restricted 2007

Creator Pattern: Inspiration from the Domain Model

Wuyts Roel
© imec restricted 2007

3. Information Expert Pattern

• A very basic principle of responsibility assignment

• Assign a responsibility to the object that has the
information necessary to fulfill it -the information
expert

– “That which has the information, does the work”

– Related to the principle of “low coupling”

 ð Localize work

93

Wuyts Roel
© imec restricted 2007

Expert Pattern

94

Pattern (Information) Expert

Problem What is the basic principle to assign responsibilities to objects ?

Solution Assign responsibility to the class that has the information to fulfill it
(the information expert)

Wuyts Roel
© imec restricted 2007

Expert Pattern: remarks

• Real-world analogy

– who predicts gains/losses in a company?

• the person with access to the date (Chief Financial Officer)

• Needed information to work out ‘responsibility’ 
 => spread over different objects

– “partial” experts that collaborate to obtain global
information (interaction is required)

• Not necessarily the best solution (e.g. database
access)

– See low coupling & high cohesion

95

Wuyts Roel
© imec restricted 2007

Expert Patroon: example 1

nExample: Who is responsible for
knowing the total of a “Sale”?

nWho possesses the information?
Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
price
ItemID

Described-by*

Contains

1..*

domein model

Wuyts Roel
© imec restricted 2007

class diagram

(design model)!Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
price
itemID

Described-by*

Contains

1..*

getTotal()

getPrice()
getSubtotal()

:Sale
t = getTotal()

:Product
Specification

1.1: p = getPrice()

lineItems[i]:SalesLineItem

1*: st =getSubtotal()

Expert Pattern

Wuyts Roel
© imec restricted 2007

What object should be responsible for knowing
ProductSpecifications, given a key?	

Take inspiration from the domain model

Expert Pattern: Example 2

98

Wuyts Roel
© imec restricted 2007

Applying Information Expert

99

: Map  
<ProductDescription>

Wuyts Roel
© imec restricted 2007

Design for “enterItem”: 3 patterns applied

100

: List 
<SalesLineItem>

: Map  
<ProductDescription>

Wuyts Roel
© imec restricted 2007

GRASP Patterns

• guiding principles to help us assign responsibilities
• GRASP “Patterns” – guidelines

• Controller

• Creator

• Information Expert

• Low Coupling

• High Cohesion

• Polymorphism

• Pure Fabrication

• Indirection

• Protected Variations

Hs 17

Hs 25

Wuyts Roel
© imec restricted 2007

6. Polymorphism

102

Pattern Polymorphism

Problem How handle alternatives based on type? How to create pluggable
software components?	

Solution When related alternatives or behaviours vary by type (class), assign
responsibility for the behavior -using polymorphic operations- to
the types for which the behavior varies.

Wuyts Roel
© imec restricted 2007

Example

void CVideoAppUi::HandleCommandL(TInt aCommand)	
{	
 switch (aCommand)	
 {	
	 case EAknSoftkeyExit:	
	 	 case EAknSoftkeyBack:	
	 	 case EEikCmdExit:	
	 	 	 	 { Exit(); break; }	
 	
	 // Play command is selected	
	 case EVideoCmdAppPlay:	
	 	 	 { DoPlayL(); break; }	 !
 // Stop command is selected	
	 case EVideoCmdAppStop:	
	 	 	 { DoStopL(); break; }	
 	
 // Pause command is selected	
	 case EVideoCmdAppPause:
	 	 	 { DoPauseL(); break; }	 !
	 // DocPlay command is selected	
	 case EVideoCmdAppDocPlay:
	 	 	 { DoDocPlayL(); break; }	 !
 // File info command is selected
	 	 case EVideoCmdAppDocFileInfo:	
	 	 	 	 { DoGetFileInfoL(); break; }	
......

103

Wuyts Roel
© imec restricted 2007

Replace case by Polymorphism

void CVideoAppUi::HandleCommandL(Command aCommand)	
 {
	 aCommand.execute();
	 }	
!
!
Create a Command class hierarchy, consisting of a (probably) abstract class
AbstractCommand, and subclasses for every command supported. Implement execute on each
of these classes	
!
virtual void AbstractCommand::execute() = 0;	
!
virtual void PlayCommand::execute() { ... do play command ...};
!
virtual void StopCommand::execute() { ... do stop command ...};	
!
virtual void PauseCommand::execute() { ... do pause command ...};	
!
virtual void DocPlayCommand::execute() { ... do docplay command ...};	
!
virtual void FileInfoCommand::execute() { ... do file info command ...};	
!

104

Wuyts Roel
© imec restricted 2007

7. Pure Fabrication Pattern

105

Pattern Pure Fabrication

Problem What object should have the responsibility, when you do not want to
violate High Cohesion and Low Coupling, or other goals, but solutions
offered by Expert (for example) are not appropriate?

Solution Assign a cohesive set of responsibilities to an artificial or
convenience class that does not represent a problem domain
concept but is purely imaginary and fabricated to obtain a pure
design with high cohesion and low coupling.

Wuyts Roel
© imec restricted 2007

Pure Fabrication Pattern

• Where no appropriate class is present: invent one

– Even if the class does not represent a problem domain concept

– “pure fabrication” = making something up: do when we’re
desperate!

• This is a compromise that often has to be made to preserve
cohesion and low coupling

– Remember: the software is not designed to simulate the
domain, but operate in it

– The software does not always have to be identical to the real
world

• Domain Model ≠ Design model

106

Wuyts Roel
© imec restricted 2007

Pure Fabrication Example

• Suppose Sale instances need to be saved in a database

• Option 1: assign this to the Sale class itself (Expert pattern)

– Implications of this solution:

• auxiliary database-operations need to be added as well

• coupling with particular database connection class

• saving objects in a database is a general service

• Option 2: create PersistentStorage class

– Result is generic and reusable class with low coupling and high cohesion

107

Pure Fabrication
=> Low Coupling
 High Cohesion

Expert 
=>High Coupling
 Low Cohesion

Wuyts Roel
© imec restricted 2007

8. Indirection Pattern

108

Pattern Indirection

Problem Where to assign a responsibility to avoid direct coupling between two
(or more) things? How to de-couple objects so that low coupling is
supported and reuse potential remains higher?	

Solution Assign the responsibility to an intermediate object to mediate
between other components or services so that they are not
directly coupled.	

!
This intermediary creates an indirection between the other
components.

Wuyts Roel
© imec restricted 2007

Indirection Pattern

• A common mechanism to reduce coupling

• Assign responsibility to an intermediate object to decouple two
components

– coupling between two classes of different subsystems can
introduce maintenance problems

• “most problems in computer science can be solved by another
level of indirection”

– A large number of design patterns are special cases of indirection
(Adapter, Facade, Observer)

Sale TaxSystemTaxSystemAdapter

Wuyts Roel
© imec restricted 2007

9. Protected Variations Pattern

110

Pattern Protected Variations

Problem How to design objects, subsystems, and systems so that the variations or
instability of these elements does not have an undesirable impact on
other elements ?

Solution Identify points of predicted variation or instability; assign
responsibilities to create a stable interface around them.

Wuyts Roel
© imec restricted 2007

Protected Variations – voorbeeld

• Video game companies make money by creating a game engine

– many games use the same engine

– what if a game is to be ported to another console ???

• a wrapper object will have to delegate 3D graphics drawing to different console-level
commands

• the wrapper is simpler to change than the entire game and all of its facets

• Wrapping the component in a stable interface means that when
variations occur, only the wrapper class need be changed

– In other words, changes remain localized

– The impact of changes is controlled

FUNDAMENTAL PRINCIPLE IN SW DESIGN
111

Wuyts Roel
© imec restricted 2007

Protected Variations – Example

• Open DataBase Connectivity (ODBC/JDBC)

– These are packages that allow applications to access
databases in a DB-independent way

• In spite of the fact that databases all use slightly different
methods of communication

• It is possible due to an implementation of Protected Variations

– Users write code to use a generic interface

• An adapter converts generic method calls to DB and vice versa

112

Wuyts Roel
© imec restricted 2007

Conclusion

• Always try to apply and balance basic OO Design
Principles

– Minimize Coupling

– Increase Cohesion

– Distribute Responsibilities

• Use and learn from established sources of
information

– Responsibility Driven Design

– GRASP patterns

• Design Patterns: see later

113

Wuyts Roel
© imec restricted 2007

References

• Rebecca Wirfs-Brock, Alan McKean, Object Design —
Roles, Responsibilities and Collaborations, Addison-
Wesley, 2003.

• http://www.wirfs-brock.com/PDFs/Responsibility-
Driven.pdf

• Craig Larman, Applying UML and Patterns – An
Introduction to Object-Oriented Analysis and Design
and Iterative Development (3rd ed.), Prentice Hall,
2005.

114

http://www.wirfs-brock.com/PDFs/Responsibility-Driven.pdf

Wuyts Roel
© imec restricted 2007

License: Creative Commons 4.0

115

http://creativecommons.org/licenses/by-sa/4.0/

