
Design of Software Systems
(Ontwerp van SoftwareSystemen)
!

1 Introduction

Roel Wuyts
OSS 2014-2015

Wuyts Roel
© imec restricted 2007

People

• Roel Wuyts

– URL: http://roelwuyts.be/

• Philippe De Ryck

– philippe.deryck@cs.kuleuven.be

• Mario Henrique Cruz Torres

– mariohenrique.cruztorres@cs.kuleuven.be

• Pieter Agten

– pieter.agten@cs.kuleuven.be

2

mailto:mariohenrique.cruztorres@cs.kuleuven.be
mailto:pieter.agten@cs.kuleuven.be

Wuyts Roel
© imec restricted 2007

About me...

3

Logic Meta Programming Language Soul
 Reflection, language symbiosis
Co-evolving Design & Implementation In-memory object versioning

Aspect-oriented Programming

Traits (OO method composition model)
ClassBoxes (OO module composition model)
Data-centric component model for  
 hard-realtime embedded systems
!
Reengineering & Program Visualization

CleanC Eclipse Plugin
Dynamic scheduling of CPU/GPU tasks
 + simulator
High Performance Computing

1995 2001 2004 7 8 9 10 11 12 13 …

doctoral researcher (VUB) Postdoc
(Bern, CH)

Professor
(ULB) Principal Scientist (imec)

Professor (KU Leuven)

Wuyts Roel
© imec restricted 2007

About me...

4

SAEM	

Bayesian PK/PD

BWA-Cilk	

elPrep	

BWA-TBB-aln	

BWA-TBB-mem	

Scientific Workflow Languages (initial results)

How to parallelize and distribute ?

How to deal with Big Data and Big Compute ?

How to let different stakeholder cooperate ?

Mapto
reference$ Prepara-on$ Variant$

Calling$
Indel$

Realignment$

Base$
Recalibra-on$

$

High Performance Computing for Life Sciences

Wuyts Roel
© imec restricted 2007

Course Goals

“This course is concerned with the design of software
systems. The focus lies on object-oriented methods.
The primary objective is learning how to take design
decisions by comparing positive and negative aspects
of possible design solutions with respect to analysis
and requirements, design, implementation and
organizational impact. The theoretical aspects of the
course are applied in a group project where a non-
trivial, existing (but new to the students) application is
extended with new functionality. “

5

Wuyts Roel
© imec restricted 2007

Prerequisite knowledge

“Solid knowledge of object-oriented concepts and
practical experience with at least one object-oriented
programming language. Practical skills needed to
develop software, such as the usage of an Integrated
Development Environment like Eclipse or Netbeans
and version control software (such as subversion).”

6

Wuyts Roel
© imec restricted 2007

• Overview of software development processes.

• Object-oriented analysis and design using the UML
modeling language.

• Study, evaluation and usage of GRASP and design
patterns.

• Implementation techniques for realizing high quality
object-oriented implementations.

• Techniques for assessing the quality of the design
and implementation of existing software systems.

7

Wuyts Roel
© imec restricted 2007

Course Material

• Slides and links on the website of the course

 http://roelwuyts.be/OSS-1415/

• Material

– Applying UML and Patterns (3rd ed.), Craig Larman.

– Design Patterns: Elements of Reusable Object-Oriented
Software, E. Gamma, R. Helm, R. Johnson, J. Vlissides.

– Refactoring: Improving the Design of Existing Code, M.
Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts.

– "No Silver Bullet: Essence and Accident in Software
Engineering ", F.P. Brooks.

8

http://roelwuyts.be/OSS-1415/
http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf

Wuyts Roel
© imec restricted 2007

Project: applying the theory in practice

• Group Project

– Number of persons in a group not yet known!

• Three iterations:

1. Investigate and evaluate an existing implementation

 Analysis of an existing system

2. Extend it (Trade-offs!)

 Decide what to modify to realize the extension

3. Refactor it

 Clean up and maybe realize a smaller extension

9

Wuyts Roel
© imec restricted 2007

Project Effort

• Effort of 120 hours / student.

• It is possible that you spend more or less !

– notify me in time of possible discrepancies

10

Wuyts Roel
© imec restricted 2007

Escalation Policy

• Groups do not always function smoothly

– But dealing with this is part of your education

• In case of problems:

– discuss within group.

– if it cannot be resolved: mail to your assistant (with
me in cc) to describe the problem.

– assistant may decide to involve me if necessary.

• In case of problems with assistant: contact me.

• In case of problems with me: contact MA1
responsible.

11

Wuyts Roel
© imec restricted 2007

Course grading: First session

• Score for Group Project defense (grade P)

• Individual oral exam (grade I)

• Grading Algorithm:

If P <= 5 : final grade = P

elif I <= 8: final grade = I

else final grade = (P + I) / 2

• If we find large work discrepancies within a group,
specific grades for that group/person can be given

 even 0 is possible when not collaborating !

12

Wuyts Roel
© imec restricted 2007

Course grading: Second session

• Second session

– Continuing project individually if P <= 5 (P’)

– New individual oral exam (I’)

• Same grading algorithm as first session but:

– P replaced with P’ (if applicable)

– I replaced with I’

13

Wuyts Roel
© imec restricted 2007

Project Defense

• Each of you gets questions and answers. Then other
group members can provide more information.

• Questions originate from your report, design and
implementation.

• You get two kinds of feedback:

– during the defense:our questions and comments

– right after the defense:

14

ok take	

care

not	

ok

Wuyts Roel
© imec restricted 2007 15

Grades

• 1st session:

– Final grade ≥ 10 : done!

– Final grade < 10 : redo in second session

• 2nd session:

– Final grade ≥ 10 : done!

– Final grade < 10 : credit not obtained

Wuyts Roel
© imec restricted 2007

Questions ?

16

Wuyts Roel
© imec restricted 2007

About You

• Let’s do an interactive “quiz”

– there is no right or wrong for most of the questions
here; goal is for me to learn your reflexes when faced
with questions related to programming language,
design, or implementation.

17

Wuyts Roel
© imec restricted 2007

Is the following correct ?

18

“A message sent to super is sent to the parent
of the object”

Wuyts Roel
© imec restricted 2007

What is the result of the following expression?

class A {	
	 public void m(A a) { System.out.println("1"); } 	
}	
!
class B extends A {	
	 public void m(B b) { System.out.println("2"); } 	
	 public void m(A a) { System.out.println("3"); } 	
}	
!
!
B b = new B();	
A a = b;	
a.m(b);

19

Wuyts Roel
© imec restricted 2007

What do you think of the following implementation?

 // Return null to signify end of file	
 protected IToken fetchToken() throws EndOfFileException {	
 ++count;	
 while (bufferStackPos >= 0) { 	
 // Tokens don't span buffers, stick to our current one	
 char[] buffer = bufferStack[bufferStackPos];	
 int limit = bufferLimit[bufferStackPos];	
 int pos = bufferPos[bufferStackPos];	!
 switch (buffer[pos]) {	!
 case '_':	
 t = scanIdentifier();	
 if (t instanceof MacroExpansionToken)	
 continue;	
 return t;	!
 case '#':	
 if (pos + 1 < limit && buffer[pos + 1] == '#') {	
 ++bufferPos[bufferStackPos];	
 return newToken(IToken.tPOUNDPOUND);	
 }	!
 // Should really check to make sure this is the first	
 // non whitespace character on the line	
 handlePPDirective(pos);	
 continue;	
… 	
(390 lines of code in total)

20

Wuyts Roel
© imec restricted 2007

Reuse versus hack

• Suppose you are responsible to add a new feature to
an existing piece of software. The design of the
existing software makes this hard. How do you
decide whether to rewrite the existing software or
whether to “hack in” the new feature ?

21

Wuyts Roel
© imec restricted 2007

Understanding Existing Systems

• Your boss wants you to quickly develop a new tool.
You decide to start from a large existing open-source
application you found on SourceForge. How do you
start ?

22

Wuyts Roel
© imec restricted 2007

Object-Oriented Software Design Question

• A restaurant menu consists of dishes, e.g. “Flemish
stew”, “Blood sausage with apples” and “Chicken
Royale with Champaign”. Each dish consists of a
number of ingredients and is either a starter, a main
course or a dessert. The menu shows for each dish
an authenticity score (1, 2 or 3), a calory score, as
well as the price. Menus need to be printed in a
variety of languages (dutch, french, english,
japanese, arabic; some left-to-right and some right-
to-left) and needs to be available on an interactive
website (where a picture is shown of the dish). The
menus change frequently with the seasons.

23

Wuyts Roel
© imec restricted 2007 24

Why Software Engineering?

• Problem Specification → Final Program

• But ...

– Where did the specification come from?
– How do you know the specification corresponds to the user’s

needs?
– How did you decide how to structure your program?
– How do you know the program actually meets the

specification?
– How do you know your program will always work correctly?
– What do you do if the users’ needs change?
– How do you divide tasks up if you have more than a one-

person team?

Wuyts Roel
© imec restricted 2007 25

What is Software Engineering? (I)

• Some Definitions and Issues

– “state of the art of developing quality software on time
and within budget”

• Trade-off between perfection and physical constraints

– Software engineering deals with real-world issues

• State of the art!

– Community decides on “best practice” + life-long
education

Wuyts Roel
© imec restricted 2007 26

What is Software Engineering? (II)

• “multi-person construction of multi-version software”

 ⎯ Parnas

• Team-work

– Scale issue (“program well” is not enough) +
Communication Issue

• Successful software systems must evolve or perish

– Change is the norm, not the exception

Wuyts Roel
© imec restricted 2007

Communication and Modeling

• Team-effort requires communication

• Results have to be communicated externally

27

Wuyts Roel
© imec restricted 2007

UML

• Unified Modeling Language

• De-facto standard that I expect everybody to know
and follow

– working knowledge of at least the use case, class,
sequence and communication diagrams

– use throughout course (theory, practice, project)

• Self-study

– I give a short overview

– You do the study

28

Wuyts Roel
© imec restricted 2007 29

General Goals of UML

• Model systems using OO concepts

• Establish an explicit coupling to conceptual as well as
executable artifacts

• To create a modeling language usable by both
humans and machines

• Models different types of systems (information
systems, technical systems, embedded systems,
real-time systems, distributed systems, system
software, business systems, UML itself, ...)

Wuyts Roel
© imec restricted 2007

11 diagrams in UML 2

30

๏ Class diagram

๏ Internal Structure Diagram

๏ Collaboration diagram

๏ Component diagram

๏ Use case diagram

๏ State machine diagram

๏ Activity Diagram

๏ Sequence diagram

๏ Communication Diagram

๏ Deployment diagram

๏ Package diagram

Structural

Dynamic

Physical
Model Management

Wuyts Roel
© imec restricted 2007

Requirements Engineering and Use Cases

31

• Requirements: documented need for what a system
or project should do

– 37% of problems with software projects have to do
with requirements

– 25% of the requirements change during the project
(and 35-50% in large projects)

• Therefore: embrace change!

Wuyts Roel
© imec restricted 2007

Types of Requirements: FURPS+ categorization

32

Functional
 features, capabilities
!
Usability
 human factors, help, documentation
Reliability
 frequency of failure, recoverability
Performance
 Response times, throughput, accuracy, resource usage
Supportability
 Adaptability, maintainability, configurability
+
 implementation, interface, operations, packaging, legal

Use Cases

Non-functional

Wuyts Roel
© imec restricted 2007

Use Cases

• Stories that describe usage of the system

– describe sequence of actions with an observable result
for a specific actor

– used by all kinds of stakeholders

• It does not describe the internal working of the
system

– What, not How

– Responsibilities of the system are described

33

Wuyts Roel
© imec restricted 2007

Use Case Diagram

34

Cashier

Refund

Purchased

Items

Process Sale

Cash register

system border

actor use case

association

Wuyts Roel
© imec restricted 2007

Fully Dressed Use Case Description

35

Use case: Process Sale

Primary Actor: Cashier

Stakeholders and
interests:

• Cashier: wants accurate, fast entry, and no payment errors, as cash
drawers shortages are deduced from his/her salary	

• Customer: wants purchase and fast service with minimal effort. Wants
easily visible display of entered items and prices. Wants proof of
purchase to support returns.	

• Manager, Government, Payment Company, ...

Precondition: Cashier is identified and authenticated

Success
Guarantee
(postcondition)

Sale is saved. Tax is correctly calculated. Receipt is generated. Accounting
and inventory are updated. Payment info is recorded.

Wuyts Roel
© imec restricted 2007

Domain Modeling

• A domain model describes meaningful concepts in
the problem domain

– again about the what, not the how

– does not model design artifacts (how), but models
conceptual artifacts, real-world things

36

Wuyts Roel
© imec restricted 2007

Domain model for the Cash Register example

37

Register

Item Store

address
name

Sale

date

time

Payment

amount

Sales
LineItem

quantity

Cashier Customer

Manager

Product
Catalog

Product
Specification

description
price
UPC

Stocks

*

Houses
1.. *

Used-by
*

Contains
1.. *

Describes
*

Captured-on

Contained-in
1.. *

Described-by

*

Records-sale-of

0..1

Started-by

Paid-by Initiated-by

Logs-
completed

6

*

3 Records-sales-on

1

1

1

1

1

1..*

1 1

1

1

1

1

1

1

1

* 1

1

concept

attribute

association

Wuyts Roel
© imec restricted 2007

Class Diagrams

38

Register

...

endSale()

enterItem(...)
makePayment(...)

Sale

time

isComplete : Boolean
/total

makeLineItem(...)

Register

...

Sale

time

isComplete : Boolean
/total

Captures

1

11

Domain Model

conceptual

perspective

Design Model

DCD; software

perspective
currentSale

Domain model is the analysis class diagram

Don’t show methods

Design model class diagrams shows methods and visibility (arrowhead on

association)
Register has reference to Sale; Sale does not have reference to Register

Avoid showing no-argument constructors & getters/setters

Wuyts Roel
© imec restricted 2007

Class Diagrams

39

Wuyts Roel
© imec restricted 2007

• UML Interaction diagrams

– model message-exchange between objects

• 2 kinds:

– Communication Diagrams – focus on interactions

– Sequence Diagrams – focus on time

Interaction diagrams

a:ClassA b:ClassB

1: message2()

2: message3()message1()

Wuyts Roel
© imec restricted 2007

• UML Interaction diagrams

– model message-exchange between objects

• 2 kinds:

– Communication Diagrams – focus on interactions

– Sequence Diagrams – focus on time

Interaction diagramma’s

b:ClassB

message2()

message3()

a:ClassA

message1()

Wuyts Roel
© imec restricted 2007

Communication Diagram Example

42

1: makePayment(cashTendered)

1.1: create(cashTendered)

:Register :Sale

:Payment

makePayment(cashTendered)

start message first internal message

instance association

parameter direction

follow-up message

Wuyts Roel
© imec restricted 2007

Sequence Diagram Example

43

 : Register : Sale : User

msg1()
msg2()

msg3()

msg4()

msg5()

time instance

lifeline

activation

assocation

Wuyts Roel
© imec restricted 2007

Conclusion

• This course is about (OO) software design

– Understand quality design and implementation

– Make reasoned design decisions

– Make trade-offs that balance quality, effort, design, and
implementation

– Be able to communicate your decision

!

http://roelwuyts.be/OSS-1415/

44

http://roelwuyts.be/OSS-1415/

Wuyts Roel
© imec restricted 2007

License: Creative Commons 4.0

45

http://creativecommons.org/licenses/by-sa/4.0/

