
Ontwerp van SoftwareSystemen

4 Design Patterns

Roel Wuyts
OSS 2013-2014

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Alexander’s patterns

• “Each pattern describes a problem which occurs over
and over again in our environment, and then
describes the core of the solution to that problem, in
such a way that you can use this solution a million
times over, without doing it the same way twice”

– Alexander uses this as part of the solution to capture
the “quality without a name”

2

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Illustrating Recurring Patterns...

3

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 4

• Do not overreact seeing all these patterns!

• Do not apply too many patterns!

• Look at the trade-offs!

• Most patterns makes systems more complex!

– but address a certain need.

• As always: do good modeling.

– then see whether patterns can help,

– and where.

Alert!

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 5

• A Design Pattern is a pattern that captures a solution
to a recurring design problem

– It is not a pattern for implementation problems

– It is not a ready-made solution that has to be applied

• cfr Rational Modeler, where patterns are available as
preconstructed class diagrams, even though in literature the
class diagrams are to illustrate the pattern!

Design Patterns

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 6

• Example:

– “We are implementing a drawing application. The
application allows the user to draw several kinds of
figures (circles, squares, lines, polymorphs, bezier
splines). It also allows to group these figures (and
ungroup them later). Groups can then be moved
around and are treated like any other figure.”

Design Patterns

Look at Composite Design Pattern

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Patterns in Software Design

• A design pattern is a description of communicating
objects and classes that are customized to solve a
general design problem in a particular context.

7

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Pattern structure

• A design pattern is a kind of blueprint

• Consists of different parts

– All of these parts make up the pattern!

– When we talk about the pattern we therefore mean all
of these parts together

• not only the class diagram...

8

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 9

Why Patterns?

• Smart

– Elegant solutions that a novice would not think of

• Generic

– Independent on specific system type, language

• Allthough slightly biased towards C++

• Well-proven

– Successfully tested in several systems

• Simple

– Combine them for more complex solutions

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

GoF Design Pattern Book

• Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995

– Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides (Gang-of-Four (GoF))

• Book is still very relevant today but:

– uses OMT notation (analogous to UML)

– illustrations are in C++

• Principles valid across OO languages!

10

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

GoF Design Pattern Book

• 23 Design Patterns

• Classification

– according to purpose

– according to problems they solve (p. 24-25)

– according to degrees of freedom (table 1.2, p. 30)

11

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Classification according to purpose

12

Creational Structural Behavioral
Factory Method Class Adapter Interpreter

Template Method

Abstract Factory
Builder
Prototype
Singleton

Object Adapter
Bridge
Composite
Decorator
Facade
Proxy

Chain of Responsibility
Command
Iterator
Mediator
Memento
Flyweight
Observer
State
Strategy
Visitor

Class
(static)

Object
(dynamic)

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Classification according to problems

– Dependence on specific classes:
• => Abstract Factory, Factory Method, Prototype

– Dependence op specific operations:
• => Chain of Responsibility, Command

– Dependence on hardware and/or software platforms:
• => Abstract Factory, Bridge

– Dependence on object representation or implementation:
• => Abstract Factory, Bridge, Memento, Proxy

– Dependence on algorithms:
• => Builder, Iterator, Strategy, Template Method, Visitor

– Tight Coupling:
• => Abstract Factory, Bridge, Chain of Responsibility, Command, Facade, Mediator, Observer

– Problems with enhancing functionality through subclassing:
• => Bridge, Chain of Responsibility, Composite, Decorator, Observer, Strategy

– Impossibility of easily changing classes:
• => Adapter, Decorator, Visitor

13

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Classification according to problems

• Different patterns are typically applicable

• Ex.: dependance on algorithms

– Algorithms are source of evolution (extend, replace,
optimize, …)

– Classes depending on algorithms are therefore
unstable

– So algorithms amenable to change have to be
encapsulated

• Design patterns that can help do this:

– Builder, Iterator, Strategy, Template Method, Visitor

14

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Classification according to degrees of freedom

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Design Pattern Relationships

17

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Pattern: Visitor

Visitor

18

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Visitor

• Category

– Behavioral

• Intent

– Represent an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.

• Motivation

19

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Motivation (cont)

20

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Applicability

• An object structure contains many classes of objects
with differing interfaces and you want to perform
operations on these objects that depend on their
concrete classes.

• Many distinct and unrelated operations need to be
performed on objects in an object structure an you
want to avoid “polluting” their classes with these
operations.

• The classes defining the object structure rarely
change but you often want to define new operations
over the structure.

21

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Structure

• Structure

22

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Sequence

23

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants

• Visitor

– Declares a Visit operation for each class of ConcreteElement in the object
structure.

– The operations name and signature identifies the class that sends the Visit
request.

• ConcreteVisitor

– Implements each operation declared by Visitor.

– Each operation implements a fragment of the algorithm for the corresponding
class of object in the object structure.

– Provides the context for the algorithm and stores its state (often accumulating
results during traversal).

• Element

– Defines an accept operation that takes a Visitor as an argument.

24

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants (cont)

• ConcreteElement

– Implements an accept operation that takes a visitor as
an argument.

• ObjectStructure

– Can enumerate its elements.

– May provide a high-level interface to allow the visitor
to visit its elements.

– May either be a Composite or a collection such as a list
or set.

25

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Collaborations

• A client that uses the visitor pattern must create a
ConcreteVisitor object and then traverse the object
structure visiting each element with the Visitor.

• When an element is visited, it calls the Visitor
operation that corresponds to its class. The element
supplies itself as an argument to this operation.

26

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences

• Makes adding new operations easy.

– a new operation is defined by adding a new visitor (in
contrast, when you spread functionality over many
classes each class must be changed to define the new
operation).

• Gathers related operations and separates unrelated
ones.

– related behavior is localised in the visitor and not
spread over the classes defining the object structure.

27

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences (cont)

• Adding new ConcreteElement classes is hard.

– each new ConcreteElement gives rise to a new abstract
operation in Visitor and a corresponding
implementation in each ConcreteVisitor.

• Allows visiting across class hierarchies.

– an iterator can also visit the elements of an object
structure as it traverses them and calls operations on
them but all elements of the object structure then
need to have a common parent. Visitor does not have
this restriction.

28

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences (cont)

• Accumulating state

– Visitor can accumulate state as it proceeds with the
traversal. Without a visitor this state must be passed
as an extra parameter of handled in global variables.

• Breaking encapsulation

– Visitor’s approach assumes that the ConcreteElement
interface is powerful enough to allow the visitors to do
their job. As a result the pattern ofthen forces to
provide public operations that access an element’s
internal state which may compromise its
encapsulation.

29

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

abstract class Equipment {

 String name;

 public String name(){

 return name;

 }

 abstract int power();

 abstract int netPrice();

 abstract void add(Equipment e);

 abstract void remove(Equipment e);

 abstract void accept(EquipmentVisitor v);

 protected Equipment(String n){

 name = n;

 }

}

30

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

abstract class EquipmentVisitor {

 public abstract void visitFloppydisk(Floppydisk f);

 public abstract void visitCard(Card c);

 public abstract void visitChassis(Chassis c);

 public abstract void visitBus(Bus b);

 public abstract void visitCabinet(Cabinet c);

}

31

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Floppydisk extends Equipment {

 public Floppydisk(String name){

 super(name);

 }

 public int power(){

 return 60;

 }

 public int netPrice(){

 return 50;

 }

 public void accept(EquipmentVisitor v){

 v.visitFloppydisk(this);

 }

 public void add(Equipment e){}

 public void remove(Equipment e){}

}

32

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Cabinet extends CompositeEquipment {

 public Cabinet(String name){
 super(name);
 }

 public int power(){
 return 0;
 }

 public int netPrice(){
 return 60;
 }

 public void accept(EquipmentVisitor v){
 Iterator i = createIterator();

 while(i.hasNext()){
 Equipment e = (Equipment) i.next();

 e.accept(v);

 }

 v.visitCabinet(this);
 }
}

33

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Main {

 public static void main(String[] args) {

 Cabinet cabinet = new Cabinet("PC Cabinet");

 Chassis chassis = new Chassis("PC Chassis");

 cabinet.add(chassis);

 Bus bus = new Bus("MCA bus");

 bus.add(new Card("NetworkCard"));

 chassis.add(bus);

 chassis.add(new Floppydisk("3.5 Floppy"));

 PricingVisitor p = new PricingVisitor();

 cabinet.accept(p);

 InventoryVisitor i = new InventoryVisitor();

 cabinet.accept(i);

 System.out.println("The computer contains: ");

 i.getInventory();

 System.out.println("The price is " + p.getTotal());

 }

}

34

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

The computer contains:

NetworkCard

MCA bus

3.5 Floppy

PC Chassis

PC Cabinet

The price is 350

35

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Known Uses

• In the Smalltalk-80 compiler.

• In 3D-graphics: when three-dimensional scenes are
represented as a hierarchy of nodes, the Visitor
pattern can be used to perform different actions on
those nodes.

36

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Visitor Pattern

• So, we’ve covered the visitor pattern as found in the
book

– Are we done?

37

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

visit(OperationA a)

visit(OperationB b)

vs

visitOperationA(OperationA a)

visitOperationB(OperationB b)

38

Thursday 26 September 13

Roel Wuyts

Short Feature...

39

Thursday 26 September 13

Roel Wuyts

What is the result of the following expression ?

class A {

 void m(A a) { println("1"); }
}
class B extends A {

 void m(B b) { println("2"); }

 void m(A a) { println("3"); }
}

B b = new B();
A a = b;
a.m(b);

 ?

40

Thursday 26 September 13

Roel Wuyts

Main Feature...

41

Thursday 26 September 13

Roel Wuyts

Visiting all Elements in the CDT Parsetree

public abstract class ASTVisitor {

	 public int visit(IASTTranslationUnit tu) { return PROCESS_CONTINUE; }

	 public int visit(IASTName name) { return PROCESS_CONTINUE; }

	 public int visit(IASTDeclaration declaration) { return PROCESS_CONTINUE; }

	 public int visit(IASTInitializer initializer) { return PROCESS_CONTINUE; }

	 public int visit(IASTParameterDeclaration parameterDeclaration) { return PROCESS_CONTINUE; }

	 public int visit(IASTDeclarator declarator) { return PROCESS_CONTINUE; }

	 public int visit(IASTDeclSpecifier declSpec) { return PROCESS_CONTINUE; }

	 public int visit(IASTExpression expression) { return PROCESS_CONTINUE; }

	 public int visit(IASTStatement statement) { return PROCESS_CONTINUE; }

	 public int visit(IASTTypeId typeId) { return PROCESS_CONTINUE; }

	 public int visit(IASTEnumerator enumerator) { return PROCESS_CONTINUE; }
	
	 public int visit(IASTProblem problem) { return PROCESS_CONTINUE; }

}

42

Thursday 26 September 13

Roel Wuyts

To Arms!

43

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Advanced Visitor Discussions

• When looking more closely at the visitor and its
implementation, we can discuss a number of things
in more detail:

– Who controls the traversal?

– What is the granularity of the visit methods?

– Implementation tricks

44

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 45

• Somewhere in the visitor, items are traversed.

• Different places where the traversal can be
implemented:

– in the visitor

– on the items hierarchy

Controlling the traversal

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 46

Traversal on the Visitor

accept(Visitor)
Expression

accept(Visitor)
Number

accept(Visitor)

left: Expression
right: Expression

BinaryOp

accept(Visitor)
Times

accept(Visitor)
Plus

accept(Visitor v) {
 v.visitPlus(this);
}

visitNumber(Number)
visitBinaryOp(BinaryOp)
visitPlus(Plus)
visitTimes(Times)

Visitor

visitNumber(Number)
visitBinaryOp(BinaryOp)
visitPlus(Plus)
visitTimes(Times)

Printer
visitNumber(Number)
visitBinaryOp(BinaryOp)
visitPlus(Plus)
visitTimes(Times)

Evaluator

visitPlus(Plus p) {
 p.left().accept(this);
 this.printPlus();
 p.right().accept(this);
}

visitPlus(Plus p) {
 double l = p.left().accept(this);
 double r = p.right().accept(this);
 return l + r;
}

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 47

Traversel on the items

accept(Visitor)
Expression

accept(Visitor)
Number

accept(Visitor)

left: Expression
right: Expression

BinaryOp

accept(Visitor)
Times

accept(Visitor)
Plus

accept(Visitor v) {
 left.visit(v);
 right.visit(v);
 v.visitPlus(this);
}

visitNumber(Number)
visitBinaryOp(BinaryOp)
visitPlus(Plus)
visitTimes(Times)

Visitor

visitNumber(Number)
visitBinaryOp(BinaryOp)
visitPlus(Plus)
visitTimes(Times)

Printer
visitNumber(Number)
visitBinaryOp(BinaryOp)
visitPlus(Plus)
visitTimes(Times)

Evaluator

visitPlus(Plus p) {
 float r = result.pop();
 float l = result.pop();
 result.push(l + r);
}

visitNumber(Number n) {
…
result.push(n);
...
}

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 48

• Sometimes you can pass context information with
the visit methods

• So visitors have more information for implementing
their operations

Granularity of Visit Methods

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 49

• Regular case: nothing special is going on

Granularity of Visit Methods

ProgramNode
nodeDo(ProgramNodeEnumerator)

nodeDo(ProgramNodeEnumerator)

temporaries: ProgramNode
statements: ProgramNode

SequenceNode

nodeDo(ProgramNodeEnumerator)
name: String

VariableNode

doNode(ProgramNode)
doNodes(List<ProgramNode>)
doSequence(SequenceNode,
 temps: List<ProgramNode>,
 statements: List<ProgramNode>)
doVariable(VariableNode, name: String)

ProgramNodeEnumerator

doVariable(…) {
 return varNode;
}

doSequence(…) {
 doNodes(temps);
 doNodes(statements);
 return seqNode;
}

doNode(ProgramNode aNode) {
 return aNode.nodeDo(this);
}

doNodes(nodes: ...) {
 for(node in nodes) {
 doNode(node)
 }
}

…
return enumerator.doSequence(
 this,
 temporaries,
 statements)

…
return enumerator.doVariable(
 this,
 name)

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 50

• More semantics in the visitor

– no TemporaryVariableNode, but specific visit method
(cfr. Pure Fabrication)

Refined granularity

ProgramNode
nodeDo(ProgramNodeEnumerator)

nodeDo(ProgramNodeEnumerator)

temporaries: ProgramNode
statements: ProgramNode

SequenceNode

nodeDo(ProgramNodeEnumerator)
name: String

VariableNode

doNode(ProgramNode)
doNodes(List<ProgramNode>)
doSequence(SequenceNode,
 temps: List<ProgramNode>,
 statements: List<ProgramNode>)
doVariable(VariableNode, name: String)
doTemporaryVariable(VariableNode, name: String)

ProgramNodeEnumerator

doTemporaryVariable(…) {
 return doVariable(aNode, name);
}

doSequence(...) {
 for(temp in temps) {
 doTemporaryVariable(temp, temp.name())
 }
 doNodes(statements);
 return seqNode;
}

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 51

• You can implement it as we have shown before.

• But notice the general structure of the methods!

• This can be taken as advantage:

– code can be generated for a visitor.

– the method can be performed/invoked

• But take care:

– only works when there is a full correspondence.

– can make the code hard to understand.

Implementation tricks

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 52

• Uses reflection to implement accept() only once

– instead of hardcoding the bodies of accept methods
over and over again

Using Reflection (invoke)

accept(Visitor)
Expression

Number
left: Expression
right: Expression

BinaryOp

TimesPlus

accept(Visitor v) {
 Class cls = this.getClass();
 Class[] param = new Class[1];
 param[0] = cls;
 Method method = cls.getDeclaredMethod("visit"+cls.getName(), param);
 method.invoke(v, this)
}

visitNumber(Number)
visitBinaryOp(BinaryOp)
visitPlus(Plus)
visitTimes(Times)

Visitor

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 53

Strategy

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Het Strategy (Policy) Patroon (315)

• Doel: onafhankelijkheid van algoritmen door inkapseling

– => variatie van algoritme mogelijk

• Implementatie-overwegingen:

– koppeling Context – Strategy:

• data als parameters naar Strategy doorgeven

• Context als parameter naar of als verwijzing vanuit Strategy

54

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Het Strategy Patroon: gevolgen

• Familie van verwante algoritmen mogelijk. Er is wel een factorizatie van
gezamenlijke functionaliteit nodig in de abstracte klasse

• Een alternatief voor subclassing. Subclassing op algoritme-niveau in plaats
van op context-niveau

• Vermijdt conditionele statements, switch zit nu in verbonden strategy object

• Verschillende implementaties vaan eenzelfde gedrag mogelijk
(bv. tijd/geheugen afweging)

• Oproeper moet wel op de hoogte zijn van verschillende mogelijke
strategieen, en moet er misschien zelfs een instellen

• Communicatie-overhead tussen Context en Strategie
=> alle mogelijke bruikbare info moet worden doorgegeven maar is
misschien overbodig

• Toenemend aantal objecten in je systeem => ev. Strategie als stateless
object ontwerpen die dan gedeeld kan worden door de verschillende context-
objecten (zie Flyweight)

55

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 56

Decorator

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

3. Verfraaien van UI Lexi

• toevoegen van kader, scroll bars, …

– gemakkelijk dynamisch te verwijderen en te combineren

– transparantie bij gebruik UI objecten

• oplossing door overerving:

– combinatorische explosie

– statische keuze

• oplossing door objectcompositie:

– dynamische keuze

– Glyph bevat Border of Border bevat Glyph ?

57

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Verfraaien van UI Lexi

• Ontwerp van Border klasse:

– hebben uitzicht, dus subklasse
van Glyph

– Border kan als gewone Glyph
behandeld worden

• concept van Transparante
Verpakking

– enkelvoudige component

– compatibele interfaces

58

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Verfraaien van UI Lexi
– Dynamische configuratie

– Uitvoering door
berichtdelegatie:

void MonoGlyph::Draw (Window* w) {
 _component->Draw(w);

}
void Border::Draw (Window* w) {

 MonoGlyph::Draw(w);
 DrawBorder(w);

}

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Het Decorator (Wrapper) Patroon (175)

• Doel:

– dynamisch en transparant verantwoordelijkheden aan
individuele objecten toevoegen

– alternatief voor extensie door overerving

60

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Het Decorator Patroon: gevolgen

• Kenmerken:

– biedt meer flexibiliteit dan (statische) overerving

– “pay as you go”: kleine functionele toevoegingen ipv
alles-in-een

– gedecoreerd object heeft andere identiteit

– Nadeel: overvloed aan kleine objecten

• Implementatie-overwegingen:

– houdt Component klasse lichtgewicht

– abstracte Decorator alleen nodig bij meerdere
verantwoordelijkheden

61

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Het Decorator Patroon

• Implementatie-overwegingen:

– Decorator of Strategy?

• Beiden passen gedrag object aan

• Strategy moet gekend zijn door Component, maar kan eigen interface hebben

• Strategy te verkiezen bij zwaargewicht Component klasse

62

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 63

Command

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

6. Gebruikersoperaties Lexi

• Doelstellingen:

– scheiding operatie van user interface

• één operatie kan op verschillende manieren aangegeven worden

• anders hoge koppeling tussen UI klassen en applicatie

– undo en redo van operaties ondersteunen

• Oplossing: definitie van Command klasse

64

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Gebruikersoperaties Lexi

• Elke concrete Command klasse bevat informatie voor
en implementatie van operatie

65

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Het Command Patroon (233)

• Doel:

– van operaties eerste-orde objecten maken om deze te
kunnen manipuleren (parameterizatie, queueing,
logging, undoing, ...)

• Structuur:

66

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Het Command Patroon: gevolgen

– Ontkoppeling oproeper en uitvoerder

– Commando’s als first-class entiteiten die kunnen
gemanipuleerd en uitgebreid worden

– Commando’s kunnen worden gegroepeerd in
samengestelde commando’s

– Eenvoudig om nieuwe commando’s te kunnen
toevoegen
=> geen uitbreiding van basisklasse nodig

67

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Patterns Catalogue

– Factory Method

– Composite

– Abstract Factory

– Singleton

– Proxy

– Adapter

– Observer

– Chain of Responsibility

– FlyWeight

– Facade

68

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Discussion of Design Patterns

Factory Method

69

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Factory Method

• Category

– Creational

• Intent

– Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.

• Motivation

– When frameworks or toolkits use abstract classes to
define and maintain relationships between objects and
are responsible for creating the objects as well.

70

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Motivation (cont)

71

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Applicability

• Use the Factory Method pattern when

– a class can't anticipate the class of objects it must
create.

– a class wants its subclasses to specify the objects it
creates.

– classes delegate responsibility to one of several helper
subclasses, and you want to localize the knowledge of
which helper subclass is the delegate.

72

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Structure

73

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants

• Product

– Defines the interface of objects the factory method creates.

• ConcreteProduct

– Implements the Product interface.

• Creator

– Declares the factory method, which returns an object of type Product.
Creator may also define a default implementation of the factory
method that returns a default ConcreteProduct object.

– They call the factory method to create a Product object.

• ConcreteCreator

– Overrides the factory method to return an instance of a
ConcreteProduct.

74

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Collaboration

• Creator relies on its subclasses to define the factory
method so that it returns an instance of the
appropriate ConcreteProduct.

75

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences

• Eliminates the need to bind application specific classes
into your code.

• Clients might have to subclass the Creator class just to
create a particular ConcreteProduct object.

• Provides hooks for subclasses

– the factory method gives subclasses a hook for providing
an extended version of an object.

• Connects parallel class hierarchies

– a client can use factory methods to create a parallel class
hierarchy (parallel class hierarchies appear when objects
delegate part of their responsibilities to another class).

76

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public interface Creator {

 public Fruit createFruit(String type);

}

public class GoodFruitCreator implements Creator{

 public Fruit createFruit(String type) {

 if (type == "apple"){

 return new Apple();

 }

 else return new Orange();

 }

}

77

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class RottenFruitCreator implements Creator{

 public Fruit createFruit(String type){

 if (type == "apple"){

 return new RottenApple();

 }

 else return new RottenOrange();

 }

}

78

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

abstract class Fruit {

 String type="";

 public String getType(){

 return type;

 }

}

public class Apple extends Fruit {

 Apple(){

 type = "apple";

 }

}

public class Orange extends Fruit {

 Orange(){

 type = "orange";

 }

}

79

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class RottenApple extends Fruit {

 RottenApple(){

 type = "rottenapple";

 }

}

public class RottenOrange extends Fruit {

 RottenOrange(){

 type = "rottenorange";

 }

}

80

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class FruitShop {

 Creator c;

 public FruitShop(Creator creator){

 c = creator;

 }

 public void getFruit(String type){

 Fruit f = c.createFruit(type);

 System.out.println("You get a(n) " + f.getType());

 }

}

81

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Main {

 public static void main(String[] args){

 FruitShop goodShop = new FruitShop(new GoodFruitCreator());

 FruitShop badShop = new FruitShop(new RottenFruitCreator());

 goodShop.getFruit("apple");

 goodShop.getFruit("orange");

 badShop.getFruit("apple");

 badShop.getFruit("orange");

 }

}

Console:

 You get a(n) apple

 You get a(n) orange

 You get a(n) rottenapple

 You get a(n) rottenorange

82

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Known Uses

• Toolkits and frameworks

• Class View in Smalltalk-80

– contains a defaultController method which is a Factory
Method.

• Class Behavior in Smalltalk-80

– contains a parserClass method which also is a factory
method.

• Could also be used to generated an appropriate type
of proxy when an object requests a reference to an
object. Factory Method makes it easy to replace the
default proxy with another one.

83

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Questions

• How does this pattern promote loosely coupled code?

• Does the following code fragment implement the
factory method pattern?

public class XMLReaderFactory {
// This method returns an instance of a class
// that implements the XMLReader interface.
// The specific class it creates and returns is
// based on a system property.

 public static XMLReader createXMLReader();

}

public interface XMLReader {
public void setContentHandler(ContentHandler handler):
public void parse(InputStream is);

}

84

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Discussion of Design Patterns

Composite

85

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Composite

• Category

– Structural

• Intent

– Compose objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat
individual objects and compositions of objects
uniformly.

• Motivation

86

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Motivation (cont)

87

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Applicability

• Use the Composite Pattern when:

– you want to represent part-whole hierarchies of
objects.

– you want clients to be able to ignore the difference
between compositions of objects and individual
objects. Clients will treat all objects in the composite
structure uniformly.

88

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Structure

89

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants

• Component

– Declares the interface for objects in the composition.

– Implements default behaviour for the interface
common to all classes, as appropriate.

– Declares an interface for accessing and managing its
child components.

• Leaf

– Represents leaf objects in the composition. A leaf has
no children.

– Defines behaviour for primitive objects in the
composition.

90

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants (cont)

• Composite

– defines behaviour for components having children.

– stores child components.

– implements child-related operations in the Component
interface.

• Client

– manipulates objects in the composition through the
Component interface.

91

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Collaborations

• Clients use the Component class interface to interact
with objects in the composite structure. Leaves
handle the requests directly. Composites forward
requests to its child components.

92

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences

• Defines class hierarchies consisting of primitive and
composite objects.

• Makes the client simple. Composite and primitive
objects are treated uniformly (no cases).

• Eases the creation of new kinds of components.

• Can make your design overly general.

93

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

abstract class Equipment {

 String name;

 public String name(){

 return name;

 }

 abstract int power();

 abstract int netPrice();

 abstract void add(Equipment e);

 abstract void remove(Equipment e);

 public Iterator createIterator(){

 return new NullIterator();

 }

 protected Equipment(String n){

 name = n;

 }

}

94

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

abstract class CompositeEquipment extends Equipment {

 ArrayList l;

 public CompositeEquipment(String name){

 super(name);

 l = new ArrayList();

 }

 abstract int power();

 public int netPrice(){

 Iterator i = createIterator();

 int total = 0;

 while(i.hasNext()){

 Equipment e = (Equipment)i.next();

 total += e.netPrice();

 }

 return total;

 }

 public void add(Equipment e){

 l.add(e);

 }

//...

95

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

//...

 public void remove(Equipment e){

 l.remove(e);

 }

 public Iterator createIterator(){

 return l.listIterator();

 }

}

96

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class NullIterator implements Iterator {

 public boolean hasNext(){

 return false;

 }

 public Object next() throws NoSuchElementException{

 throw new NoSuchElementException();

 }

 public void remove() throws IllegalStateException{

 throw new IllegalStateException();

 }

}

97

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Cabinet extends CompositeEquipment {

 public Cabinet(String name){

 super(name);

 }

 public int power(){

 return 0;

 }

 public int netPrice(){

 int total = 60 + super.netPrice();

 return total;

 }

}

98

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Chassis extends CompositeEquipment {

 public Chassis(String name){

 super(name);

 }

 public int power(){

 return 0;

 }

 public int netPrice(){

 int total = 40 + super.netPrice();

 return total;

 }

}

99

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Bus extends CompositeEquipment {

 public Bus (String name){

 super(name);

 }

 public int power(){

 return 40;

 }

 public int netPrice(){

 int total = 100 + super.netPrice();

 return total;

 }

}

100

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Card extends Equipment{

 public Card(String name){

 super(name);

 }

 public int power(){

 return 60;

 }

 public int netPrice(){

 return 100;

 }

 public void add(Equipment e){}

 public void remove(Equipment e){}

}

101

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Floppydisk extends Equipment {

 public Floppydisk(String name){

 super(name);

 }

 public int power(){

 return 60;

 }

 public int netPrice(){

 return 50;

 }

 public void add(Equipment e){}

 public void remove(Equipment e){}

}

102

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Main {

 public static void main(String[] args) {

 Cabinet cabinet = new Cabinet("PC Cabinet");

 Chassis chassis = new Chassis("PC Chassis");

 cabinet.add(chassis);

 Bus bus = new Bus("MCA bus");

 bus.add(new Card("NetworkCard"));

 chassis.add(bus);

 chassis.add(new Floppydisk("3.5 Floppy"));

 System.out.println("The price is " + cabinet.netPrice());

 }

}

Console:

 The price is 350

103

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Known Uses

• Can be found in almost all object oriented systems.

• The original View class in Smalltalk Model / View /
Controller was a composite.

104

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Questions

• How does the Composite pattern help to consolidate
system-wide conditional logic?

• Would you use the composite pattern if you did not
have a part-whole hierarchy? In other words, if only
a few objects have children and almost everything
else in your collection is a leaf (a leaf that has no
children), would you still use the composite pattern
to model these objects?

105

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Discussion of Design Patterns

Singleton

106

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Singleton

• Category

– Creational

• Intent

– Ensure a class only has one instance, and provide a global point of
access to it.

• Motivation

– There should be only one instance.

– For example, many printers, but only one printspooler.

– Using a global variable containing the single instance?

• Cannot ensure no other instances are created.

– Let the class control single instance.

107

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Applicability and Structure

• Use Singleton pattern when

– There must be exactly one instance of al class, and it
must be accessible to clients from a well-known access
point.

– When the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code.

• Structure

108

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants and Collaborations

• Participants

– Singleton

• Defines an instance operation that lets clients access its unique
instance. Instance is a class operation that will either return or
create and return the sole instance.

• May be responsible for creating its own unique instance.

• Collaborations

– Clients access a Singleton solely through Singleton’s
instance operation.

109

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences

• Controlled access to sole instance.

– Because the Singleton class encapsulates its sole
instance, it can have strict control over how and when
clients access it.

• Reduced name space.

– The Singleton pattern is an improvement over global
variables that store sole instances.

110

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences (cont)

• Permits refinement of operations and representation.

– The Singleton class may be subclassed, an application
can be configured with an instance of the class you
need at runtime.

• Permits a variable number of instances.

– The same approach can be used to control the number
of instances that can exist in an application, only the
operation that grants access to the instance(s) must be
provided.

• More flexible than class operations.

111

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class MazeFactory {

 private static MazeFactory instance = null;

 public static MazeFactory getInstance(){

 if (instance == null){

 instance = new MazeFactory();

 }

 return instance;

 }

 private MazeFactory();

 // rest of the interface

 // ...

}

112

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Main {

 public static void main(String[] args) {

 MazeGame gmg = new MazeGame();

 //MazeFactory factory = new MazeFactory();

 MazeFactory factory = MazeFactory.getInstance();

 Maze mz = gmg.createMaze(factory);

 }

}

113

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Known Uses

• Every time you want to limit the creation of
additional object after the instantiation of the first
one. This is usefull to limit memory usage when
multiple objects are not necessary.

114

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Questions

• What is the difference with a global variable?

• Gamma (one of the authors of the book on Design
Patterns) recently pointed out that he was very
unhapy with this pattern. More specifically he claims
that it usually indicates bad design. Can you imagine
what he thinks so ?

115

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Discussion of Design Patterns

Abstract Factory

116

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Abstract Factory

• Category

– Creational

• Intent

– Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

• Motivation

– User interface toolkit for multiple look-and-feel standards.

– Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

117

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Motivation (cont)

• Motivation (cont)

118

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Applicability

• Use the Abstract Factory pattern when

– a system should be independent of how its products
are created, composed and represented.

– a system should be configured with one of multiple
families of products.

– a family of related product objects is designed to be
used together, and you need to enforce this constraint.

– you want to provide a class library of products, and
you want to reveal just their interfaces, not their
implementations.

119

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Structure

• Structure

120

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants

• AbstractFactory

– Declares an interface for operations that create
abstract product objects.

• ConcreteFactory

– Implements the operations to create concrete product
objects.

• AbstractProduct

– Declares an interface for a type of product object.

121

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants (cont)

• ConcreteProduct

– Defines a product object to be created by the
corresponding concrete factory.

– Implements the AbstractProduct interface.

• Client

– Uses only interfaces declared by AbstractFactory and
AbstractProduct classes.

122

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Collaborations

• Normally a single instance of ConcreteFactory is
created at run-time. This concrete factory creates
products having a particular implementation.

• AbstractFactory defers creation of product objects to
its ConcreteFactory subclass.

123

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences

• It isolates concrete classes.

– The abstract factory encapsulates the responsibility
and the process of creating product objects, it isolates
clients from implementation classes.

– Product class names are isolated in the implementation
of the concrete factory and do not appear in the client
code.

• It makes exchanging product families easy.

– The concrete factory appears only one in the
application – that is, where it is instantiate – to it is
easy to replace.

124

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences (cont)

• It promotes consistency among products.

– When products of one family are designed to work
together, it is important for an application to use
objects from one family only.

– The abstract factory makes this easy to enforce.

• Supporting new kinds of products is difficult.

– Because the abstract factory interface fixes the set of
products that can be created, it is not easy to add new
products.

– This would require extending the factory interface
which involves extending changing the abstract factory
and all its subclasses.

125

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public abstract class MapSite {

 public abstract void enter();

}

public class Room extends MapSite{

 int roomNumber;

 MapSite[] sides = new MapSite[4];

 public Room(int roomNo){

 roomNumber = roomNo;

 }

 public MapSite getSide(int direction){

 return sides[direction];

 }

 public void setSide(int direction, MapSite site){

 sides[direction] = site;

 }

 public void enter(){};

}

126

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Wall extends MapSite {

 public void enter(){};

}

public class Door extends MapSite {

 Room roomOne;

 Room roomTwo;

 boolean isOpen;

 public Door (Room room1, Room room2){

 roomOne = room1;

 roomTwo = room2;

 }

 public Room otherSideFrom(Room room){}

 public void enter(){};

}

127

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Maze {

 //...

 public Maze(){

 //...

 }

 public void addRoom(Room room){

 //...

 }

 public Room roomNo(int roomNbr){

 //...

 }

}

public class Direction {

 static int north = 0;

 static int south = 1;

 static int east = 2;

 static int west = 3;

}

128

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

//This is a bad implementation, imagine you want to have other Mazes!

public class BadMazeGame {

 public Maze createMaze(){

 Maze newMaze = new Maze();

 Room r1 = new Room(1);

 Room r2 = new Room(2);

 Door theDoor = new Door(r1, r2);

 newMaze.addRoom(r1);

 newMaze.addRoom(r2);

 r1.setSide(Direction.north, new Wall());

 r1.setSide(Direction.east, theDoor);

 r1.setSide(Direction.south, new Wall());

 r1.setSide(Direction.west, new Wall());

 r2.setSide(Direction.north, new Wall());

 r2.setSide(Direction.east, new Wall());

 r2.setSide(Direction.south, new Wall());

 r2.setSide(Direction.west, theDoor);

 return newMaze;

 }

}

129

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public abstract class MazeFactory {

 public Maze makeMaze(){

 return new Maze();

 }

 public Wall makeWall(){

 return new Wall();

 }

 public Room makeRoom(int n){

 return new Room(n);

 }

 public Door makeDoor(Room r1, Room r2){

 return new Door(r1, r2);

 }

}

public class RegularMazeFactory extends MazeFactory {}

130

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class GoodMazeGame {

 public Maze createMaze(MazeFactory factory){

 Maze newMaze = factory.makeMaze();

 Room r1 = factory.makeRoom(1);

 Room r2 = factory.makeRoom(2);

 Door theDoor = factory.makeDoor(r1, r2);

 newMaze.addRoom(r1);

 newMaze.addRoom(r2);

 r1.setSide(Direction.north, factory.makeWall());

 r1.setSide(Direction.east, theDoor);

 r1.setSide(Direction.south, factory.makeWall());

 r1.setSide(Direction.west, factory.makeWall());

 r2.setSide(Direction.north, factory.makeWall());

 r2.setSide(Direction.east, factory.makeWall());

 r2.setSide(Direction.south, factory.makeWall());

 r2.setSide(Direction.west, theDoor);

 return newMaze;

 }

}

131

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Main {

 public static void main(String[] args) {

 BadMazeGame bmg = new BadMazeGame();

 Maze mz1 = bmg.createMaze();

 GoodMazeGame gmg = new GoodMazeGame();

 RegularMazeFactory factory = new RegularMazeFactory();

 Maze mz2 = gmg.createMaze(factory);

 }

}

132

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Known Uses

• Usually used in toolkits for generating look-and-feel
specific user interface objects.

• Also used to achieve portability across different
window systems.

133

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Questions

• Describe the working of the abstract factory pattern
with your own words.

• What pattern(s) is (are) often used together with the
abstract factory pattern?

134

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Discussion of Design Patterns

Proxy

135

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Proxy

• Category

– Structural

• Intent

– Provide a surrogate or placeholder for another object to control
access to it.

• Motivation

– Defer the full cost of the creation and initialisation of an object
until we actually need it.

– For example: a document with lots of graphical objects can be
expensive to create, but opening it should be fast.

– A proxy could act as a stand-in for the real objects.

136

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Kinds of Proxies

• a remote proxy provides a local
representative for an object in a
different address space.

• a virtual proxy creates expensive
objects on demand.

• a protection proxy controls access
to the original object and are
useful when objects have
different access rights.

• a smart reference is a
replacement for a bare pointer
that performs additional actions
when an object is accessed: e.g.
counting references, loading a
persistent object when it is first
referenced, locking the real
object, ...

proxy

Client class

Real class

137

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Structure

• Structure

138

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants

• Proxy

– Maintains a reference that lets the proxy access the real
subject.

– Provides an interface identical to the Subject’s so that a
proxy can be substituted for the real subject.

– Controls access to the real subject and may be responsible
for creating and deleting it.

– Remote proxies are responsible for encoding a request and
its arguments and for sending the request to the real
subject in the other address space.

– Virtual proxies may cache information about the real subject
so that they can postpone accessing it.

– Protection proxies check that the caller has the access
permission to perform a request.

139

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants (cont) and Collaboration

• Participants (cont)

– Subject

• Defines a common interface for RealSubject and Proxy so that
a Proxy can be used anywhere a RealSubject is expected.

– RealSubject
• Defines the real object that the proxy represents.

• Collaboration
– Proxy forwards requests to RealSubject when

appropriate, depending on the kind of Proxy.

140

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences

• The Proxy pattern introduces a level of indirection
when accessing an object. This indirection has many
uses:

– A remote proxy can hide the fact that the object
resides in a different address space.

– A virtual proxy can perform optimisations.

– Both protection proxies and smart pointers allow
additional housekeeping.

141

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences (cont)

• The proxy patterns can be used to implement “copy-
on-write”.

– To avoid unnecessary copying of large objects the real
subject is referenced counted.

– Each copy requests increments this counter but only
when a clients requests an operation that modifies the
subject the proxy actually copies it.

142

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public interface IExampleClass {

 public void method1();

 public void method2();

 public void print();

}

public class ExampleClass implements IExampleClass {

 private String name;

 public ExampleClass(String n){

 name = n;

 }

 public void method1(){

 System.out.println(name + " executed ExampleClass method1");

 }

 public void method2(){

 System.out.println(name + " executed ExampleClass method2");

 }

 public void print(){

 System.out.println("My name is " + name);

 }

}

143

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class ExampleClassProxy implements IExampleClass{

 private String name;

 private ExampleClass eClass = null;

 public ExampleClassProxy(String n){

 this.name = n;

 }

 public void method1(){

 getInstance().method1();

 }

 public void method2(){

 getInstance().method2();

 }

 public void print(){

 System.out.println("My name is " + name);

 }

 //...

144

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

//...

 public IExampleClass getInstance(){

 if (eClass == null){

 eClass = new ExampleClass(name);

 System.out.println("Created the ExampleClass");

 }

 return eClass;

 }

}

145

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Class

public class Main {

 public static void main(String[] args) {

 IExampleClass e = new ExampleClassProxy("Andy");

 e.print();

 e.method1();

 e.method2();

 }

}

146

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Known Uses

• Encapsulators can be implemented as proxies.

• They are often used to represent local
representatives for distributed objects.

• They have been used in textbuilding tools to enhance
performance.

147

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Questions

• If a Proxy is used to instantiate an object only when
it is absolutely needed, does the Proxy simplify code?

148

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Discussion of Design Patterns

Adapter

149

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Adapter

• Category

– Structural

• Intent

– Convert the interface of a class into another interface clients
expect. Lets classes with incompatible interfaces work
together.

• Motivation

– Sometimes a toolkit class is not reusable because its interface
does not match the domain-specific interface an application
requires.

– A drawing editor has one abstraction for lines and textboxes,
but textbox has a different interface and implementation.

150

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Motivation (cont)

151

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Applicability

• Use Adapter when

– You want to use an existing class, and its interface
does not match the one you need.

– You want to create a reusable class that cooperates
with unrelated or unforeseen classes, which do not
necessarily have compatible interfaces.

– (object adapter only) You need to use several existing
subclasses, but it’s impractival to adapt their interface
by subclassing every one. An object adapter can adapt
the interface of its parent class.

152

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Structure

• Structure

– Class adapter

– Object adapter

153

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants and Collaborations

• Participants

– Target

• Defines the domain-specific interface that Client uses.

– Client

• Collaborates with objects conforming to the Target interface.

– Adaptee

• Defines an existing interface that needs adapting.

– Adapter

• Adapts the interface of Adaptee to the Target interface.

• Collaborations

– Clients call operations on an Adapter instance. In turn, the adapter calls
Adaptee operations that carry out the request.

154

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences

• How much adapting does Adapter do?

– Ranges from simple interface conversion to supporting an
entirely different set of operations.

• Pluggable adapters.

– By building interface adaption into a class, it becomes
more reusable because it does not assume the same
interface to be used by other classes.

• Using two-way adapters to provide transparency.

– An adapted object no longer conforms to the Adaptee
interface, so it can’t be used as is wherever an Adaptee
object can. Two-way adapters can provide such
transparency.

155

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

// has a boundingbox for its bounderies

// uses a Manipulator to animate a Shape when a user manipulates it

interface Shape {

 public void boundingBox(Point bottomLeft, Point topRight);

 public Manipulator createManipulator();

}

// has origin, height and width instead

// has no Manipulator

public class TextView {

 public void getOrigin (Coord x, Coord y){};

 public void getExtent (Coord width, Coord height){};

 public boolean isEmpty (){return true;};

}

156

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

// this is an example of a class-adaptor

public class CTextShape extends TextView implements Shape {

 //convert one interface to another

 public void boundingBox(Point bottomLeft, Point topRight){

 Coord bottom = new Coord();

 Coord left = new Coord();
 Coord width = new Coord();

 Coord height = new Coord();

 getOrigin(bottom, left);

 getExtent(width, height);

 bottomLeft = new Point(bottom, left);
 topRight = new Point(new Coord(bottom.value + height.value),

 new Coord(left.value + width.value));

 };

 //direct forwarding

 public boolean isEmpty(){return super.isEmpty();};
 //assume TextManipulator exists

 public Manipulator createManipulator(){

 return new TextManipulator(this);

 };

}

157

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example

// this is an example of an object-adaptor

public class OTextShape implements Shape {
 TextView text;

 OTextShape(TextView t){

 text = t;

 }

 public void boundingBox(Point bottomLeft, Point topRight){
 Coord bottom = new Coord();
 Coord left = new Coord();
 Coord width = new Coord();
 Coord height = new Coord();
 text.getOrigin(bottom, left);
 text.getExtent(width, height);

 bottomLeft = new Point(bottom, left);
 topRight = new Point(new Coord(bottom.value + height.value), new

Coord(left.value + width.value));

 };
 public boolean isEmpty(){
 return text.isEmpty();};
 public Manipulator createManipulator(){
 return new TextManipulator(this);
 };
}

158

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Questions

• Would you ever create an Adapter that has the same
interface as the object which it adapts? Would your
Adapter then be a Proxy?

159

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Discussion of Design Patterns

Observer

160

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Observer

• Category

– Behavioral

• Intent

– Define a one-to-many dependency between objects so
that when one object changes state, all its dependants
are notified and updated automatically.

• Motivation

– different types of GUI elements depicting the same
application data.

– different windows showing different views on the same
application model.

161

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Applicability

• When an abstraction has two aspects, one dependant
on the other. Encapsulating these aspects in seperate
objects lets you vary and reuse them independently.

• When a change to one object requires changing
others, and you don't know how many objects need
to be changed.

• When an object should be able to notify other objects
without making assumptions about who these
objects are. In other words, you do not want these
objects tightly coupled.

162

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Structure

163

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants

• Subject

– knows its observers. Any number of Observer objects
may observe an object.

– provides an interface for attaching and detaching
Observers.

• Observer

– defines an updating interface for objects that should be
notified of changes in a subject.

164

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants (cont)

• ConcreteSubject

– stores state of interest to ConcreteObserver objects.

– sends a notification to its observers when its state
changes.

• ConcreteObserver

– maintains a reference to a ConcreteSubject object.

– stores state that should stay consistant with the
subject's.

– implements the Observer updating interface.

165

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Collaborations

166

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences

• Abstract and minimal coupling between Subject and
Observer.

– The subject does not know the concrete class of any
observer. Concrete subject and concrete observer
classes can be reused independently.

• Support for broadcast communication.

– The notification a subject sends does not need to
specify a receiver, it will broadcast to all interested
parties.

167

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences (cont)

• Unexpected updates.

– Observers don’t have knowledge about each other’s
presence, a small operation may cause a cascade of
updates.

168

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Subject {

 private List observers = new LinkedList();

 protected Subject();

 void attach(Observer o){

 observers.add(o);

 };

 void detach(Observer o){

 observers.remove(o);

 };

 void notifyObservers(){

 ListIterator i = observers.listIterator(0);

 while(i.hasNext()){

 ((Observer) i.next()).update(this);

 }

 };

}

169

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public abstract class Observer {

 abstract void update(Subject changedSubject);

 protected Observer();

}

public class ClockTimer extends Subject {

 int hour = 0;

 int minutes = 0;

 int seconds = 0;

 int getHour(){

 return hour;

 }

 int getMinutes(){

 return minutes;

 }

 int getSeconds(){

 return seconds;

 }

//…

170

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

void tick(){
 //updating the time
 if(seconds == 59){
 if (minutes == 59){
 if (hour == 23){
 hour = 0;
 minutes = 0;
 seconds = 0;
 }
 else {
 seconds = 0;
 minutes = 0;
 hour = hour + 1;
 }
 }
 else {
 seconds = 0;
 minutes = minutes + 1;
 }
 }
 else seconds = seconds + 1;
 notifyObservers();
 }
}

171

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class ClockDisplay extends Observer{

 private ClockTimer subject;
 private String clocktype;

 ClockDisplay(ClockTimer c, String type){

 subject = c;

 subject.attach(this);
 clocktype = type;

 }

 void update(Subject changedSubject){

 if (changedSubject == subject){
 displayTime();

 }

 }

 void displayTime(){
 System.out.println(clocktype + "-->" + subject.getHour()+ ":" +

subject.getMinutes()+ ":" + subject.getSeconds());

 }

}

172

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

//if not interrupted, will continue for 24 hours
public class Main {
 public static void main(String[] args) {
 ClockTimer c = new ClockTimer();
 ClockDisplay d1 = new ClockDisplay(c, "Digital");
 ClockDisplay d2 = new ClockDisplay(c, "Analog");
 int count = 0;
 while (count < (60*60*24)){
 c.tick();
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 count = count + 1;
 }
 }
}

Digital-->0:0:1
Analog-->0:0:1
Digital-->0:0:2
Analog-->0:0:2
…

173

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Known Uses

• Best known use is Smalltalk Model/View/Controller.

174

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Questions

• There are two methods for propagating data to
observers with the Observer design pattern: the
push model and the pull model. Why would one
model be preferable over the other? What are the
trade-offs of each model?

• In what real-world system can we expect encounter
the Observer pattern quite often?

175

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Discussion of Design Patterns

Chain of Responsibility

176

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Chain of Responsibility

• Category

– Behavioral

• Intent

– Avoid coupling the sender of a request to its receiver
by giving more than one object a chance to handle the
request. Chain the receiving objects and pass the
request along the chain until an object handles it.

• Motivation

177

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Applicability

• Use Chain of Responsibility when

– more than one object may handle a request, and the
handler is not known a priori.

– you want to issue a request to one of several objects
without specifying the receiver explicitly.

– the set of objects that can handle a request should be
specified dynamically.

178

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Structure

179

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants

• Handler

– defines an interface for handling objects.

– (optional) implements the successor link.

• ConcreteHandler

– handles requests it is responsible for.

– can access its successor.

– if the ConcreteHandler can handle the request, it does so,
otherwise it forwards the request to its successor.

• Client

– initiates the request to a ConcreteHandler object on the chain.

180

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Collaborations and Consequences

• Collaborations

– When a client issues a request, the request propagates
along the chain until a ConcreteHandler object takes
responsibility to handle it.

• Consequences

– Reduced Coupling

• The pattern frees an object from knowing which other object
handles a request. An object only has to know that a request
will be handled appropriately.

181

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences (cont)

• Added flexibility in assigning responsibilities to objects.

– You can add or change responsibilities for handling a request
by adding or changing the chain at runtime.

– Receipt is not guaranteed.

• Since a request has no implicit receiver, there is no guarantee
that it will be handled, it could fall of the end of the chain
without being handled.

182

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Topic {

 static int NO_HELP_TOPIC = -1;

 static int PRINT_TOPIC = 1;

 static int PAPER_ORIENTATION_TOPIC = 2;

 static int APPLICATION_TOPIC = 3;

}

183

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Helphandler {
 private Helphandler successor = null;
 private int topic = Topic.NO_HELP_TOPIC;
 protected Helphandler();
 public Helphandler(Helphandler h, int topicValue){
 if(h != null){
 successor = h;
 }

 topic = topicValue;

 }

 boolean hasHelp(){
 return topic != Topic.NO_HELP_TOPIC;
 }

 void setHandler(Helphandler h, int topicValue){
 successor = h;

 topic = topicValue;

 }
 void handleHelp(){
 if (successor != null){
 successor.handleHelp();

 }

 }
}

184

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Widget extends Helphandler {

 private Widget parent;

 protected Widget();

 protected Widget(Widget w, int topicValue){

 super(w, topicValue);

 parent = w;

 }

}

public class Button extends Widget{

 public Button (Widget d, int topicValue){

 super(d, topicValue);

 }

 public void handleHelp(){

 if (hasHelp()){

 System.out.println("Button displays topic.");

 }

 else {

 super.handleHelp();

 }

185

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Dialog extends Widget{

 public Dialog(Helphandler h, int topicValue){

 setHandler(h, topicValue);

 }

 public void handleHelp(){

 if (hasHelp()){

 System.out.println("Dialog displays topic.");

 }

 else {

 super.handleHelp();

 }

 }

}

186

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Application extends Helphandler{

 public Application (int topicValue){

 super(null, topicValue);

 }

 public void handleHelp(){

 System.out.println("Application displays all possible topics.");

 }

}

187

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Main {

 public static void main(String[] args) {

 Application a = new Application(Topic.APPLICATION_TOPIC);

 Dialog d1 = new Dialog(a, Topic.PRINT_TOPIC);

 Button b1 = new Button(d1, Topic.PAPER_ORIENTATION_TOPIC);

 b1.handleHelp();

 Button b2 = new Button(d1, Topic.NO_HELP_TOPIC);

 b2.handleHelp();

 Dialog d2 = new Dialog(a, Topic.NO_HELP_TOPIC);

 Button b3 = new Button(d2, Topic.NO_HELP_TOPIC);

 b3.handleHelp();

 }

}

Button displays topic.

Dialog displays topic.

Application displays all possible topics.

188

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Known Uses

• Different class libraries use this pattern, giving
different names to handlers, e.g. when a user clicks
on a mouse button, an event gets generated and
passed along the chain.

• Is also used in graphical systems, where a graphical
object propagates the request for an update to its
enclosing container object, because that object has
more information about its context.

189

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Questions

• What pattern(s) would you use in combination with
the Chain of Responsibility? Why?

190

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Discussion of Design Patterns

Flyweight

191

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Flyweight

• Category

– Structural

• Intent

– Use sharing to support large numbers of fine-grained
objects efficiently.

• Motivation

– Some applications benefit from using objects in their
design but a naive implementation is prohibitively
expensive because of the large number of objects.

– For example a document editor uses an object for each
character in the text.

192

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Motivation (cont)

193

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Motivation (cont)

194

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Applicability

• Apply the Flyweight pattern when all of the following
are true:

– An application uses a large number of objects.

– Storage cost is high because of the quantity of objects.

– Most objects can be made extrinsic.

– Many groups of objects can be replaced by relatively
few shared objects once extrinsic state is removed.

– The application does not depend on object identity.

195

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Structure

196

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants

• Flyweight

– Declares an interface through which flyweights can receive and
act upon extrinsic state.

• Concrete Flyweight

– Implements the flyweight interface and adds storage for
intrinsic state.

– A concrete flyweight object must be shareable, i.e. state must
be intrinsic.

• Unshared Concrete Flyweight

– Not all flyweights subclasses need to be shared, unshared
concrete flyweight objects have concrete flyweight objects at
some level in the flyweight object structure.

197

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants (cont)

• Flyweight Factory

– Creates and manages flyweight objects.

– Ensures that flyweights are shared properly; when a
client requests a flyweight the flyweight factory
supplies an existing one from the pool or creates one
and adds it to the pool.

• Client

– Mainrains a reference to flyweight(s).

– Computes or stores the extrinsic state of flyweight(s).

198

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Collaborations

• State that a flyweight needs to function must be characterised
as either intrinsic or extrinsic. Intrinsic state is stored in the
concrete flyweight object; extrinsic state is stored or computed
by client objects. Clients pass this state to the flyweight when
invoking operations.

• Clients should not instantiate concrete flyweights directly.
Clients must obtain concrete flyweight objects exclusively from
the flyweight factory object to enshure that they are shared
properly.

199

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences

• Flyweights may introduce run-time costs associated
with transferring, finding, and/or computing extrinsic
state.

• The increase in run-time cost are offset by storage
savings which increase

– as more flyweights are shared.
– as the amount of intrinsic state is considerable.

– as the amount of extrinsic state is considerable but can
be computed.

200

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences (cont)

• The flyweight pattern is often combined with the
composite pattern to build a graph with shared leaf
nodes. Because of the sharing, leaf nodes cannot
store their parent which has a major impact on how
the objects in the hierarchy communicate.

201

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

• We will see a nice example of a Flyweight in the
exercises ;-)

202

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Known Uses

• Has been used in e.g. document editors. When first
introduced in such an editor, only the style and and
character code of the characters were intrinsic, while
the position of the characters was extrinsic. This
made the program very fast. In a document
containing 180.000 characters, only 480 character
objects had to be allocated.

• Can also be used to abstract the look and feel of
layouts. Only the objects of the flyweight pool have
to be replaced to change a complete layout.

203

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Questions

• Give a non-GUI example of a flyweight.

• What is the minimum configuration for using
flyweight? do you need to be working with
thousands of objects, hundreds, tens?

• Suppose you have to implement a texteditor. The
text of the texteditor consists of lines and characters
on the lines.

204

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Discussion of Design Patterns

Facade

205

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Facade

• Category

– Structural

• Intent

– Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.

• Motivation

facade

Client classes

Subsystem classes

206

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Motivation (cont)

• Provide a simple interface to a complex subsystem.

• Decouple a subsystem from clients and other
subsystems.

• Create layered subsystems by providing an interface
to each subsystem level.

207

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example

208

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Applicability

• Use the Facade pattern when

– you want to provide a simple interface to a complex
subsystem.

– there are many dependencies between clients and the
implementation classes of an abstraction. Introduce a facade
to decouple the subsystem from clients and other subsystems,
thereby promoting subsystem independence and portability.

– you want to layer your subsystems. Use a facade to define an
entry point to each subsystem level. If subsystems are
dependent, then you can simplify the dependencies between
them by making them communicate with each other solely
through their facades.

209

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Structure

210

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Participants

• Facade

– knows which subsystem classes are responsible for a
request.

– delegates client requests to appropriate subsystem
objects.

• Subsystem classes

– implement subsystem functionality.

– handle work assigned by the Facade object.

– have no knowledge of the facade; that is, they keep no
references to it.

211

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Collaborations

• Clients communicate with the subsystem by sending
requests to Facade, which forwards them to the
appropriate subsystem object(s). Although the
subsystem objects perform the actual work, the
facade may have to do work of its own to translate
its interface to subsystem interfaces.

• Clients that use the facade don't have to access its
subsystem objects directly.

212

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Consequences

• The Facade pattern offers the following benefits:

– It shields clients from subsystem components, thereby
reducing the number of objects that clients deal with
and making the subsystem easier to use.

– It promotes weak coupling between the subsystem and
its clients. Weak coupling lets you vary the components
of the subsystem without affecting its clients.

– It doesn't prevent applications from using subsystem
classes if they need to. Thus you can choose between
ease of use and generality.

213

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Example Code

public class Compiler {

 public void Compile(InputStream input, OutputStream output){

 Scanner scanner = new Scanner(input);

 ProgramNodeBuilder builder;

 Parser parser;

 parser.parse(scanner, builder);

 RISCCodeGenerator generator = new RISCCodeGenerator(output);

 ProgramNode parseTree = builder.GetRootNode();

 parseTree.traverse(generator);

 }

}

214

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Known Uses

• We have seen the compiler example, but this pattern
can be used for other complicated frameworks as
well.

215

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Questions

• Describe the differences between Facade and
Adapter.

• How complex must a sub-system be in order to
justify using a facade?

• What are the additional uses of a facade with
respect to an organization of designers and
developers with varying abilities? What are the
political ramifications?

216

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007 217

Wrap-up

• Architectures "can't be made, but only generated,
indirectly, by the ordinary actions of the people, just
as a flower cannot be made, but only generated from
the seed." (Alexander)

– patterns describe such building blocks

– applying them implicitly changes the overall structure
(architecture)

– whether it is on classes, components, or people

Thursday 26 September 13

Wuyts Roel
 imec restricted 2007

Conclusion

• Can you answer this?

– How does Strategy improve coupling and cohesion?

– Does Abstract Factory says the same than the Creator
GRASP Pattern?

– Can you give examples of patterns that can be used
together ?

– When does it make sense to combine the Iterator and
the Composite Pattern ?

218

Thursday 26 September 13

