
Ontwerp van SoftwareSystemen

3 Metrics and Software
Visualization

Roel Wuyts
OSS 2013-2014

Courtesy of Prof. Dr. Michele Lanza
http://www.inf.unisi.ch/faculty/lanza/

[A cool and excellent teacher and person]

Thursday 26 September 13

Software Design & Evolution
Michele Lanza

Thursday 26 September 13

Lecture 04
Metrics & Problem Detection

Thursday 26 September 13

Reference

M. Lanza, R. Marinescu
“Object-Oriented Metrics in Practice”

Springer, 2006
ISBN 3-540-24429-8

Thursday 26 September 13

Tom de Marco

You cannot control what you cannot
measure

Thursday 26 September 13

Metrics are functions that assign numbers to
products, processes and resources

Thursday 26 September 13

Software metrics are measurements which
relate to software systems, processes or
related documents

Thursday 26 September 13

Metrics compress system properties and traits
into numbers

Let’s see some examples..

Thursday 26 September 13

Examples of size metrics

Chidamber & Kemerer,
1994

Thursday 26 September 13

Examples of size metrics

‣ NOM - Number of Methods

Chidamber & Kemerer,
1994

Thursday 26 September 13

Examples of size metrics

‣ NOM - Number of Methods
‣ NOA - Number of Attributes

Chidamber & Kemerer,
1994

Thursday 26 September 13

Examples of size metrics

‣ NOM - Number of Methods
‣ NOA - Number of Attributes
‣ LOC - Number of Lines of Code

Chidamber & Kemerer,
1994

Thursday 26 September 13

Examples of size metrics

‣ NOM - Number of Methods
‣ NOA - Number of Attributes
‣ LOC - Number of Lines of Code
‣ NOS - Number of Statements

Chidamber & Kemerer,
1994

Thursday 26 September 13

Examples of size metrics

‣ NOM - Number of Methods
‣ NOA - Number of Attributes
‣ LOC - Number of Lines of Code
‣ NOS - Number of Statements
‣ NOC - Number of Children

Chidamber & Kemerer,
1994

Thursday 26 September 13

Cyclomatic Complexity (CYCLO)

McCabe, 1976
Thursday 26 September 13

Cyclomatic Complexity (CYCLO)

‣ The McCabe cyclomatic complexity (CYCLO) counts
the number of independent paths through the code
of a function

McCabe, 1976
Thursday 26 September 13

Cyclomatic Complexity (CYCLO)

‣ The McCabe cyclomatic complexity (CYCLO) counts
the number of independent paths through the code
of a function
‣ Good: it reveals the minimum number of tests to write

McCabe, 1976
Thursday 26 September 13

Cyclomatic Complexity (CYCLO)

‣ The McCabe cyclomatic complexity (CYCLO) counts
the number of independent paths through the code
of a function
‣ Good: it reveals the minimum number of tests to write
‣ Bad: its interpretation does not directly lead to

improvement actions

McCabe, 1976
Thursday 26 September 13

Weighted Method Count (WMC)

Chidamber & Kemerer,
1994

Thursday 26 September 13

Weighted Method Count (WMC)

‣ WMC sums up the complexity of a class’ methods
(measured by the metric of your choice, usually
CYCLO)

Chidamber & Kemerer,
1994

Thursday 26 September 13

Weighted Method Count (WMC)

‣ WMC sums up the complexity of a class’ methods
(measured by the metric of your choice, usually
CYCLO)
‣ Good: It is configurable, thus adaptable to our precise

needs

Chidamber & Kemerer,
1994

Thursday 26 September 13

Weighted Method Count (WMC)

‣ WMC sums up the complexity of a class’ methods
(measured by the metric of your choice, usually
CYCLO)
‣ Good: It is configurable, thus adaptable to our precise

needs
‣ Bad: Its interpretation does not directly lead to

improvement actions

Chidamber & Kemerer,
1994

Thursday 26 September 13

Coupling Between Objects (CBO)

Chidamber & Kemerer,
1994

Thursday 26 September 13

Coupling Between Objects (CBO)

‣ CBO shows the number of classes from which
methods or attributes are used.

Chidamber & Kemerer,
1994

Thursday 26 September 13

Coupling Between Objects (CBO)

‣ CBO shows the number of classes from which
methods or attributes are used.
‣ Good: CBO takes into account real dependencies, not

just declared ones

Chidamber & Kemerer,
1994

Thursday 26 September 13

Coupling Between Objects (CBO)

‣ CBO shows the number of classes from which
methods or attributes are used.
‣ Good: CBO takes into account real dependencies, not

just declared ones
‣ Bad: No differentiation of types and/or intensity of

coupling

Chidamber & Kemerer,
1994

Thursday 26 September 13

McCall, 1977
Boehm, 1978

Thursday 26 September 13

Metrics help to assess and improve quality!

Do they?

Thursday 26 September 13

McCall, 1977
Boehm, 1978

?
Problems..

Thursday 26 September 13

McCall, 1977
Boehm, 1978

?
Problems..

‣ Metrics granularity

Thursday 26 September 13

McCall, 1977
Boehm, 1978

?
Problems..

‣ Metrics granularity
‣ metrics capture

symptoms,not causes of
problems

Thursday 26 September 13

McCall, 1977
Boehm, 1978

?
Problems..

‣ Metrics granularity
‣ metrics capture

symptoms,not causes of
problems

‣ in isolation, metrics do not
lead to improvement actions

Thursday 26 September 13

McCall, 1977
Boehm, 1978

?
Problems..

‣ Metrics granularity
‣ metrics capture

symptoms,not causes of
problems

‣ in isolation, metrics do not
lead to improvement actions

‣ Implicit Mapping

Thursday 26 September 13

McCall, 1977
Boehm, 1978

?
Problems..

‣ Metrics granularity
‣ metrics capture

symptoms,not causes of
problems

‣ in isolation, metrics do not
lead to improvement actions

‣ Implicit Mapping
‣ we do not reason in terms of

metrics, but in terms of
design (principles)

Thursday 26 September 13

2 big obstacles in using
metrics:

Thresholds make metrics hard to interpret

Thursday 26 September 13

How do I get an
initial understanding of a system?

Thursday 26 September 13

Metric Value
LOC 35175
NOM 3618
NOC 384
CYCLO 5579
NOP 19
CALLS 15128
FANOUT 8590
AHH 0.12
ANDC 0.31

Thursday 26 September 13

Metric Value
LOC 35175
NOM 3618
NOC 384
CYCLO 5579
NOP 19
CALLS 15128
FANOUT 8590
AHH 0.12
ANDC 0.31

Thursday 26 September 13

Metric Value
LOC 35175
NOM 3618
NOC 384
CYCLO 5579
NOP 19
CALLS 15128
FANOUT 8590
AHH 0.12
ANDC 0.31

And now what?

Thursday 26 September 13

We need means to compare

Thursday 26 September 13

We need means to compare

coupling?

Thursday 26 September 13

We need means to compare

coupling?

hierarchies?

Thursday 26 September 13

Characterizing Systems with Metrics

Thursday 26 September 13

The Overview Pyramid provides a metrics
overview

Inheritance

Size Communication

Lanza & Marinescu, 2006
Thursday 26 September 13

The Overview Pyramid provides a metrics
overview

NOP 19

NOC 384
NOM 3618

LOC 35175
CYCLO 5579

Size

Thursday 26 September 13

The Overview Pyramid provides a metrics
overview

20.21 NOP 19

9.42 NOC 384
9.72 NOM 3618

0.15 LOC 35175
CYCLO 5579

Size

Thursday 26 September 13

The Overview Pyramid provides a metrics
overview

3618 NOM

15128 CALLS

8590 FANOUT

Communication

Thursday 26 September 13

The Overview Pyramid provides a metrics
overview

3618 NOM 4.18
15128 CALLS 0.56
8590 FANOUT

Communication

Thursday 26 September 13

The Overview Pyramid provides a metrics
overview

ANDC 0.31
AHH 0.12

Inheritance

Thursday 26 September 13

The Overview Pyramid provides a metrics
overview

ANDC 0.31
AHH 0.12

20.21 NOP 19

9.42 NOC 384
9.72 NOM 3618 3618 NOM 4.18

0.15 LOC 35175 15128 CALLS 0.56
CYCLO 5579 8590 FANOUT

Inheritance

Size Communication

Thursday 26 September 13

Obtaining Thresholds

Java C++

LOW AVG HIGH LOW AVG HIGH

CYCLO/
LOC 0.16 0.20 0.24 0.20 0.25 0.30

LOC/NOM 7 10 13 5 10 16

NOM/NOC 4 7 10 4 9 15

...

Thursday 26 September 13

The Overview Pyramid provides a metrics
overview

ANDC 0.31
AHH 0.12

20.21 NOP 19

9.42 NOC 384
9.72 NOM 3618 3618 NOM 4.18

0.15 LOC 35175 15128 CALLS 0.56
CYCLO 5579 8590 FANOUT

Inheritance

Size Communication

Thursday 26 September 13

The Overview Pyramid provides a metrics
overview

ANDC 0.31
AHH 0.12

20.21 NOP 19

9.42 NOC 384
9.72 NOM 3618 3618 NOM 4.18

0.15 LOC 35175 15128 CALLS 0.56
CYCLO 5579 8590 FANOUT

Inheritance

Size Communication

close to highclose to averageclose to low

Thursday 26 September 13

The Overview Pyramid provides a metrics
overview

Inheritance

Size Communication

close to highclose to averageclose to low

Thursday 26 September 13

How do I improve my code?

‣ Quality is more than zero bugs
‣ Quality is about design principles, design heuristics,

and best practices
‣ Breaking them leads to
‣ Code deterioration
‣ Design problems ~ Maintenance problems

Thursday 26 September 13

Imagine...

You change a small
design fragment...

...and one third of all
classes require
changes!

Thursday 26 September 13

Design Problems

‣ Expensive
‣ Frequent
‣ Unavoidable
‣ How can we detect and eliminate them?

Thursday 26 September 13

Reference

M. Lanza, R. Marinescu
“Object-Oriented Metrics in Practice”

Springer, 2006
ISBN 3-540-24429-8

Thursday 26 September 13

Identity Disharmony

How do I
define

myself?

Thursday 26 September 13

Identity Disharmony

How do I
define

myself?

God Class
Data Class
Brain Class

Feature Envy
Brain Method

Thursday 26 September 13

Collaboration Disharmony

How do I
interact

with
others?

Thursday 26 September 13

Collaboration Disharmony

How do I
interact

with
others?

Intensive Coupling
Dispersive Coupling

Shotgun Surgery

Thursday 26 September 13

Classification Disharmony

How do I define
myself with respect

to my ancestors
and descendants?

Thursday 26 September 13

Classification Disharmony

How do I define
myself with respect

to my ancestors
and descendants?

Futile Hierarchy
Tradition Breaker

Refused Parent Bequest

Thursday 26 September 13

God Class

“In a good object-oriented
design

the intelligence of a system is
uniformly distributed among

the top-level classes.”

Arthur Riel, 1996

Thursday 26 September 13

God Classes

Thursday 26 September 13

God Classes

‣ God Classes tend to centralize the intelligence of
the system, to do everything and to use data from
small data-classes

Thursday 26 September 13

God Classes

‣ God Classes tend to centralize the intelligence of
the system, to do everything and to use data from
small data-classes

‣ God Classes tend

Thursday 26 September 13

God Classes

‣ God Classes tend to centralize the intelligence of
the system, to do everything and to use data from
small data-classes

‣ God Classes tend
‣ to centralize the intelligence of the system

Thursday 26 September 13

God Classes

‣ God Classes tend to centralize the intelligence of
the system, to do everything and to use data from
small data-classes

‣ God Classes tend
‣ to centralize the intelligence of the system
‣ to do everything and

Thursday 26 September 13

God Classes

‣ God Classes tend to centralize the intelligence of
the system, to do everything and to use data from
small data-classes

‣ God Classes tend
‣ to centralize the intelligence of the system
‣ to do everything and
‣ to use data from small data-classes

Thursday 26 September 13

God Classes

‣ God Classes tend to centralize the intelligence of
the system, to do everything and to use data from
small data-classes

‣ God Classes tend
‣ to centralize the intelligence of the system
‣ to do everything and
‣ to use data from small data-classes

‣ God Classes

Thursday 26 September 13

God Classes

‣ God Classes tend to centralize the intelligence of
the system, to do everything and to use data from
small data-classes

‣ God Classes tend
‣ to centralize the intelligence of the system
‣ to do everything and
‣ to use data from small data-classes

‣ God Classes
‣ centralize the intelligence of the system

Thursday 26 September 13

God Classes

‣ God Classes tend to centralize the intelligence of
the system, to do everything and to use data from
small data-classes

‣ God Classes tend
‣ to centralize the intelligence of the system
‣ to do everything and
‣ to use data from small data-classes

‣ God Classes
‣ centralize the intelligence of the system
‣ do everything

Thursday 26 September 13

God Classes

‣ God Classes tend to centralize the intelligence of
the system, to do everything and to use data from
small data-classes

‣ God Classes tend
‣ to centralize the intelligence of the system
‣ to do everything and
‣ to use data from small data-classes

‣ God Classes
‣ centralize the intelligence of the system
‣ do everything
‣ use data from small data-classes

Thursday 26 September 13

God Classes

Thursday 26 September 13

God Classes

‣ God Classes
‣ centralize the intelligence of the system
‣ do everything
‣ use data from small data-classes

Thursday 26 September 13

God Classes

‣ God Classes
‣ centralize the intelligence of the system
‣ do everything
‣ use data from small data-classes

‣ God Classes
‣ are complex: high WMC
‣ are not cohesive: low TCC
‣ access external data: ATFD

Thursday 26 September 13

God Classes

‣ God Classes
‣ centralize the intelligence of the system
‣ do everything
‣ use data from small data-classes

‣ God Classes
‣ are complex: high WMC
‣ are not cohesive: low TCC
‣ access external data: ATFD

Compose metrics into queries

using logical operators

Thursday 26 September 13

Detection Strategies

‣ Detection strategies are metric-based queries to
detect design flaws

METRIC 1 > Threshold 1

Rule 1

METRIC 2 < Threshold 2

Rule 2

AND Quality problem

Thursday 26 September 13

Design Flaws do not come alone

God

Class

Brain

Class

Feature

Envy

Data

Class

Brain

Method

Significant

Duplication

Intensive

Coupling

Extensive

Coupling

Shotgun

Surgery

Tradition

Breaker

Refused

Parent

Bequest

uses

has

is

has

has

has (partial)

is partially

has

is

is

has

Futile

Hierarchy

uses

has

has

is

has (subclass)

Classification

Disharmonies

Identity

Disharmonies

Collaboration

Disharmonies

Thursday 26 September 13

Characteristics of a God Class

Thursday 26 September 13

Heavily accesses data
of other “lightweight”
classes, either
directly or using
accessor
methods.

Characteristics of a God Class

Thursday 26 September 13

Heavily accesses data
of other “lightweight”
classes, either
directly or using
accessor
methods.

Is large

Characteristics of a God Class

Thursday 26 September 13

Heavily accesses data
of other “lightweight”
classes, either
directly or using
accessor
methods.

Is large

Has a lot of
non-
communicative
behavior

Characteristics of a God Class

Thursday 26 September 13

Heavily accesses data
of other “lightweight”
classes, either
directly or using
accessor
methods.

Is large

Has a lot of
non-
communicative
behavior

Characteristics of a God Class

God
Class

Thursday 26 September 13

God Class Detection Strategy

ATFD > FEW

Class uses directly more than a

few attributes of other classes

WMC ≥ VERY HIGH

Functional complexity of the

class is very high

TCC < ONE THIRD

Class cohesion is low

AND GodClass

Thursday 26 September 13

And Now?

Thursday 26 September 13

Follow A Clear and Repeatable Process

Thursday 26 September 13

Follow A Clear and Repeatable Process

Thursday 26 September 13

Follow A Clear and Repeatable Process

Thursday 26 September 13

Follow A Clear and Repeatable Process

Do not reason about quality in terms of numbers!

Thursday 26 September 13

Metrics are only half the truth

Thursday 26 September 13

Can we understand the beauty of a painting by
measuring its frame and counting its colors?

Thursday 26 September 13

Lecture 05
Software Visualization

Thursday 26 September 13

Source Code = Text
Thursday 26 September 13

Programming = Writing

Thursday 26 September 13

/***/
/* micro-Max, */
/* A chess program smaller than 2KB (of non-blank source), by H.G. Muller */
/***/
/* version 3.2 (2000 characters) features: */
/* - recursive negamax search */
/* - quiescence search with recaptures */
/* - recapture extensions */
/* - (internal) iterative deepening */
/* - best-move-first 'sorting' */
/* - a hash table storing score and best move */
/* - full FIDE rules (expt minor ptomotion) and move-legality checking */

#define F(I,S,N) for(I=S;I<N;I++)
#define W(A) while(A)
#define K(A,B) *(int*)(T+A+(B&8)+S*(B&7))
#define J(A) K(y+A,b[y])-K(x+A,u)-K(H+A,t)

#define U 16777224
struct _ {int K,V;char X,Y,D;} A[U]; /* hash table, 16M+8 entries*/

int V=112,M=136,S=128,I=8e4,C=799,Q,N,i; /* V=0x70=rank mask, M=0x88 */

char O,K,L,
w[]={0,1,1,3,-1,3,5,9}, /* relative piece values */
o[]={-16,-15,-17,0,1,16,0,1,16,15,17,0,14,18,31,33,0, /* step-vector lists */
 7,-1,11,6,8,3,6, /* 1st dir. in o[] per piece*/
 6,3,5,7,4,5,3,6}, /* initial piece setup */
b[129], /* board: half of 16x8+dummy*/
T[1035], /* hash translation table */

n[]=".?+nkbrq?*?NKBRQ"; /* piece symbols on printout*/

D(k,q,l,e,J,Z,E,z,n) /* recursive minimax search, k=moving side, n=depth*/
int k,q,l,e,J,Z,E,z,n; /* (q,l)=window, e=current eval. score, E=e.p. sqr.*/
{ /* e=score, z=prev.dest; J,Z=hashkeys; return score*/
 int j,r,m,v,d,h,i=9,F,G;
 char t,p,u,x,y,X,Y,H,B;
 struct _*a=A;
 /* lookup pos. in hash table*/
 j=(k*E^J)&U-9; /* try 8 consec. locations */
 W((h=A[++j].K)&&h-Z&&--i); /* first empty or match */
 a+=i?j:0; /* dummy A[0] if miss & full*/
 if(a->K) /* hit: pos. is in hash tab */
 {d=a->D;v=a->V;X=a->X; /* examine stored data */
 if(d>=n) /* if depth sufficient: */
 {if(v>=l|X&S&&v<=q|X&8)return v; /* use if window compatible */
 d=n-1; /* or use as iter. start */
 }X&=~M;Y=a->Y; /* with best-move hint */
 Y=d?Y:0; /* don't try best at d=0 */
 }else d=X=Y=0; /* start iter., no best yet */
 N++; /* node count (for timing) */
 W(d++<n|z==8&N<1e7&d<98) /* iterative deepening loop */
 {x=B=X; /* start scan at prev. best */
 Y|=8&Y>>4; /* request try noncastl. 1st*/
 m=d>1?-I:e; /* unconsidered:static eval */
 do{u=b[x]; /* scan board looking for */
 if(u&k) /* own piece (inefficient!)*/
 {r=p=u&7; /* p = piece type (set r>0) */
 j=o[p+16]; /* first step vector f.piece*/
 W(r=p>2&r<0?-r:-o[++j]) /* loop over directions o[] */
 {A: /* resume normal after best */
 y=x;F=G=S; /* (x,y)=move, (F,G)=castl.R*/
 do{H=y+=r; /* y traverses ray */
 if(Y&8)H=y=Y&~M; /* sneak in prev. best move */
 if(y&M)break; /* board edge hit */
 if(p<3&y==E)H=y^16; /* shift capt.sqr. H if e.p.*/
 t=b[H];if(t&k|p<3&!(r&7)!=!t)break; /* capt. own, bad pawn mode */
 i=99*w[t&7]; /* value of capt. piece t */

 if(i<0||E-S&&b[E]&&y-E<2&E-y<2)m=I; /* K capt. or bad castling */
 if(m>=l)goto C; /* abort on fail high */

 if(h=d-(y!=z)) /* remaining depth(-recapt.)*/
 {v=p<6?b[x+8]-b[y+8]:0; /* center positional pts. */
 b[G]=b[H]=b[x]=0;b[y]=u&31; /* do move, strip virgin-bit*/
 if(!(G&M)){b[F]=k+6;v+=30;} /* castling: put R & score */
 if(p<3) /* pawns: */
 {v-=9*(((x-2)&M||b[x-2]!=u)+ /* structure, undefended */
 ((x+2)&M||b[x+2]!=u)-1); /* squares plus bias */
 if(y+r+1&S){b[y]|=7;i+=C;} /* promote p to Q, add score*/
 }
 v=-D(24-k,-l-(l>e),m>q?-m:-q,-e-v-i, /* recursive eval. of reply */
 J+J(0),Z+J(8)+G-S,F,y,h); /* J,Z: hash keys */
 v-=v>e; /* delayed-gain penalty */
 if(z==9) /* called as move-legality */
 {if(v!=-I&x==K&y==L) /* checker: if move found */
 {Q=-e-i;O=F;return l;} /* & not in check, signal */
 v=m; /* (prevent fail-lows on */
 } /* K-capt. replies) */
 b[G]=k+38;b[F]=b[y]=0;b[x]=u;b[H]=t; /* undo move,G can be dummy */
 if(Y&8){m=v;Y&=~8;goto A;} /* best=1st done,redo normal*/
 if(v>m){m=v;X=x;Y=y|S&G;} /* update max, mark with S */
 } /* if non castling */
 t+=p<5; /* fake capt. for nonsliding*/
 if(p<3&6*k+(y&V)==S /* pawn on 3rd/6th, or */
 ||(u&~24)==36&j==7&& /* virgin K moving sideways,*/
 G&M&&b[G=(x|7)-(r>>1&7)]&32 /* 1st, virgin R in corner G*/
 &&!(b[G^1]|b[G^2]) /* 2 empty sqrs. next to R */
){F=y;t--;} /* unfake capt., enable e.p.*/
 }W(!t); /* if not capt. continue ray*/
 }}}W((x=x+9&~M)-B); /* next sqr. of board, wrap */
C:if(m>I/4|m<-I/4)d=99; /* mate is indep. of depth */
 m=m+I?m:-D(24-k,-I,I,0,J,Z,S,S,1)/2; /* best loses K: (stale)mate*/
 if(!a->K|(a->X&M)!=M|a->D<=d) /* if new/better type/depth:*/
 {a->K=Z;a->V=m;a->D=d;A->K=0; /* store in hash,dummy stays*/
 a->X=X|8*(m>q)|S*(m<l);a->Y=Y; /* empty, type (limit/exact)*/
 } /* encoded in X S,8 bits */
/*if(z==8)printf("%2d ply, %9d searched, %6d by (%2x,%2x)
\n",d-1,N,m,X,Y&0x77);*/
 }
 if(z&8){K=X;L=Y&~M;}
 return m;
}

main()
{
 int j,k=8,*p,c[9];

 F(i,0,8)
 {b[i]=(b[i+V]=o[i+24]+40)+8;b[i+16]=18;b[i+96]=9; /* initial board setup*/
 F(j,0,8)b[16*j+i+8]=(i-4)*(i-4)+(j-3.5)*(j-3.5); /* center-pts table */
 } /*(in unused half b[])*/
 F(i,M,1035)T[i]=random()>>9;

 W(1) /* play loop */
 {F(i,0,121)printf(" %c",i&8&&(i+=7)?10:n[b[i]&15]); /* print board */
 p=c;W((*p++=getchar())>10); /* read input line */
 N=0;
 if(*c-10){K=c[0]-16*c[1]+C;L=c[2]-16*c[3]+C;}else /* parse entered move */
 D(k,-I,I,Q,1,1,O,8,0); /* or think up one */
 F(i,0,U)A[i].K=0; /* clear hash table */
 if(D(k,-I,I,Q,1,1,O,9,2)==I)k^=24; /* check legality & do*/
 }
}

Thursday 26 September 13

Software... Visualization?
Thursday 26 September 13

Thursday 26 September 13

preemptive
disclaimer

no silver bullet

visualization is
only a means,
not the end

Thursday 26 September 13

Thursday 26 September 13

not software

Thursday 26 September 13

Software Visualization

‣ Program Visualization: “The visualization of the
actual program code or data structures in static or
dynamic form”

‣ Algorithm Visualization: “The visualization of the
higher-level abstractions which describe software”

Algorithm
Visualizati

static algorithm
visualization

algorithm
animation

Program
Visualizati

static
code

visualization

static
data

visualization

data
animation

code
animation

Thursday 26 September 13

Software Visualization

‣ Program Visualization: “The visualization of the
actual program code or data structures in static or
dynamic form”

‣ Algorithm Visualization: “The visualization of the
higher-level abstractions which describe software”

Algorithm
Visualizati

static algorithm
visualization

algorithm
animation

Program
Visualizati

static
code

visualization

static
data

visualization

data
animation

code
animation

Thursday 26 September 13

Software Visualization in Context

Thursday 26 September 13

Software Visualization in Context

‣ There are many good-looking visualizations, but...

Thursday 26 September 13

Software Visualization in Context

‣ There are many good-looking visualizations, but...
‣ When it comes to maintenance & evolution, there

are several issues:

Thursday 26 September 13

Software Visualization in Context

‣ There are many good-looking visualizations, but...
‣ When it comes to maintenance & evolution, there

are several issues:
‣ Scalability

Thursday 26 September 13

Software Visualization in Context

‣ There are many good-looking visualizations, but...
‣ When it comes to maintenance & evolution, there

are several issues:
‣ Scalability
‣ Information Retrieval

Thursday 26 September 13

Software Visualization in Context

‣ There are many good-looking visualizations, but...
‣ When it comes to maintenance & evolution, there

are several issues:
‣ Scalability
‣ Information Retrieval
‣ What to visualize

Thursday 26 September 13

Software Visualization in Context

‣ There are many good-looking visualizations, but...
‣ When it comes to maintenance & evolution, there

are several issues:
‣ Scalability
‣ Information Retrieval
‣ What to visualize
‣ How to visualize

Thursday 26 September 13

Software Visualization in Context

‣ There are many good-looking visualizations, but...
‣ When it comes to maintenance & evolution, there

are several issues:
‣ Scalability
‣ Information Retrieval
‣ What to visualize
‣ How to visualize
‣ Limited time

Thursday 26 September 13

Software Visualization in Context

‣ There are many good-looking visualizations, but...
‣ When it comes to maintenance & evolution, there

are several issues:
‣ Scalability
‣ Information Retrieval
‣ What to visualize
‣ How to visualize
‣ Limited time
‣ Limited resources

Thursday 26 September 13

Program Visualization

Thursday 26 September 13

Program Visualization

‣ “The visualization of the actual program code or
data structures in either static or dynamic form”

Thursday 26 September 13

Program Visualization

‣ “The visualization of the actual program code or
data structures in either static or dynamic form”

‣ Overall goal: generate views of a system to
understand it

Thursday 26 September 13

Program Visualization

‣ “The visualization of the actual program code or
data structures in either static or dynamic form”

‣ Overall goal: generate views of a system to
understand it

‣ Surprisingly complex problem domain/research area

Thursday 26 September 13

Program Visualization

‣ “The visualization of the actual program code or
data structures in either static or dynamic form”

‣ Overall goal: generate views of a system to
understand it

‣ Surprisingly complex problem domain/research area
‣ Visual Aspects: Efficient use of space, overplotting

problems, layout issues, HCI issues, GUI issues, lack of
conventions (colors, shapes, etc.)

Thursday 26 September 13

Program Visualization

‣ “The visualization of the actual program code or
data structures in either static or dynamic form”

‣ Overall goal: generate views of a system to
understand it

‣ Surprisingly complex problem domain/research area
‣ Visual Aspects: Efficient use of space, overplotting

problems, layout issues, HCI issues, GUI issues, lack of
conventions (colors, shapes, etc.)

‣ Software Aspects

Thursday 26 September 13

Program Visualization

‣ “The visualization of the actual program code or
data structures in either static or dynamic form”

‣ Overall goal: generate views of a system to
understand it

‣ Surprisingly complex problem domain/research area
‣ Visual Aspects: Efficient use of space, overplotting

problems, layout issues, HCI issues, GUI issues, lack of
conventions (colors, shapes, etc.)

‣ Software Aspects
‣ Granularity (complete systems, subsystems, modules, classes,

etc.)

Thursday 26 September 13

Program Visualization

‣ “The visualization of the actual program code or
data structures in either static or dynamic form”

‣ Overall goal: generate views of a system to
understand it

‣ Surprisingly complex problem domain/research area
‣ Visual Aspects: Efficient use of space, overplotting

problems, layout issues, HCI issues, GUI issues, lack of
conventions (colors, shapes, etc.)

‣ Software Aspects
‣ Granularity (complete systems, subsystems, modules, classes,

etc.)
‣ When to apply (first contact, known/unknown parts, forward

engineering?)
Thursday 26 September 13

Static Code Visualization

Thursday 26 September 13

Static Code Visualization

‣ The visualization of information that can be
extracted from a system at “compile-time”

Thursday 26 September 13

Static Code Visualization

‣ The visualization of information that can be
extracted from a system at “compile-time”

‣ Directly influenced by programming languages and
their paradigms

Thursday 26 September 13

Static Code Visualization

‣ The visualization of information that can be
extracted from a system at “compile-time”

‣ Directly influenced by programming languages and
their paradigms
‣ Object-Oriented: classes, methods, attributes,

inheritance, ...

Thursday 26 September 13

Static Code Visualization

‣ The visualization of information that can be
extracted from a system at “compile-time”

‣ Directly influenced by programming languages and
their paradigms
‣ Object-Oriented: classes, methods, attributes,

inheritance, ...
‣ Procedural: procedures, invocations, imports, ...

Thursday 26 September 13

Static Code Visualization

‣ The visualization of information that can be
extracted from a system at “compile-time”

‣ Directly influenced by programming languages and
their paradigms
‣ Object-Oriented: classes, methods, attributes,

inheritance, ...
‣ Procedural: procedures, invocations, imports, ...
‣ Functional: functions, function calls, ...

Thursday 26 September 13

Examples

Thursday 26 September 13

Treemaps

Thursday 26 September 13

Treemaps

‣ Pros
‣ 100% screen usage

‣ Scalability

‣ Cons
‣ Interpretation

‣ Information overload

‣ Reflections
‣ Excellent for hierarchical data

Thursday 26 September 13

Softwarenaut

Thursday 26 September 13

Softwarenaut

‣ Pros
‣ Intuitive, metrics-based,

interactive visualization

‣ Cons
‣ Distance to source code

‣ Reflections
‣ The best vertical software

exploration tool ever

Thursday 26 September 13

Euclidean Cones

‣ Pros
‣ More information than 2D

‣ Cons
‣ Lack of depth

‣ Navigation

Thursday 26 September 13

Hyperbolic Trees

‣ Pros
‣ Good focus

‣ Dynamic

‣ Cons
‣ Copyrighted!

Thursday 26 September 13

Rigi

‣ The grandfather of software
visualization tools

‣ Pros
‣ Scalability

‣ Domain-independent

‣ Cons
‣ Lack of code semantics

Thursday 26 September 13

Distribution Maps

Thursday 26 September 13

The Evolution Radar

Thursday 26 September 13

Increasing Information Granularity: The Class
Blueprint

Initialize Interface Internal Accessor Attribute

invocation and access direction

Thursday 26 September 13

Detailing Class Blueprints

Regular

Overridin
g

Extendin
g

Abstract

Constant

Delegating

Setter

Getter

Method

invocations

lines

Attribut
e

internal access

external
access

Access

Invocation

Initialize Interface Internal Accessor Attribute

Thursday 26 September 13

A Pattern Language based on Class Blueprints

Thursday 26 September 13

number of
lines of code

number of attributes

number of methods

The Polymetric View Principle

Thursday 26 September 13

Thursday 26 September 13

System Complexity View

Thursday 26 September 13

a simple and powerful concept

Thursday 26 September 13

Thursday 26 September 13

http://xray.inf.usi.ch/xray.php

Released:
Nov 2007

Thursday 26 September 13

http://www.inf.unisi.ch/phd/wettel/codecity.html
http://www.inf.unisi.ch/phd/wettel/codecity.html

http://xray.inf.usi.ch/xray.php

Released:
Nov 2007 free

4000 +
downloads

Thursday 26 September 13

http://www.inf.unisi.ch/phd/wettel/codecity.html
http://www.inf.unisi.ch/phd/wettel/codecity.html

Reflections on Static Visualization

Thursday 26 September 13

Reflections on Static Visualization

‣ Pros

Thursday 26 September 13

Reflections on Static Visualization

‣ Pros
‣ Intuitive

Thursday 26 September 13

Reflections on Static Visualization

‣ Pros
‣ Intuitive
‣ Aesthetically pleasing

Thursday 26 September 13

Reflections on Static Visualization

‣ Pros
‣ Intuitive
‣ Aesthetically pleasing

‣ Cons

Thursday 26 September 13

Reflections on Static Visualization

‣ Pros
‣ Intuitive
‣ Aesthetically pleasing

‣ Cons
‣ Several approaches are orthogonal to each other

Thursday 26 September 13

Reflections on Static Visualization

‣ Pros
‣ Intuitive
‣ Aesthetically pleasing

‣ Cons
‣ Several approaches are orthogonal to each other
‣ No conventions

Thursday 26 September 13

Reflections on Static Visualization

‣ Pros
‣ Intuitive
‣ Aesthetically pleasing

‣ Cons
‣ Several approaches are orthogonal to each other
‣ No conventions
‣ Too easy to produce meaningless results

Thursday 26 September 13

Reflections on Static Visualization

‣ Pros
‣ Intuitive
‣ Aesthetically pleasing

‣ Cons
‣ Several approaches are orthogonal to each other
‣ No conventions
‣ Too easy to produce meaningless results
‣ Scaling up is possible at the expense of semantics

Thursday 26 September 13

Reflections on Static Visualization

‣ Pros
‣ Intuitive
‣ Aesthetically pleasing

‣ Cons
‣ Several approaches are orthogonal to each other
‣ No conventions
‣ Too easy to produce meaningless results
‣ Scaling up is possible at the expense of semantics

‣ Orthogonally

Thursday 26 September 13

Reflections on Static Visualization

‣ Pros
‣ Intuitive
‣ Aesthetically pleasing

‣ Cons
‣ Several approaches are orthogonal to each other
‣ No conventions
‣ Too easy to produce meaningless results
‣ Scaling up is possible at the expense of semantics

‣ Orthogonally
‣ Without programming knowledge it’s only colored boxes

and arrows..
Thursday 26 September 13

Visualizing Software Systems
as Code Cities

Thursday 26 September 13

The City Metaphor

Thursday 26 September 13

The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

Thursday 26 September 13

The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

Thursday 26 September 13

The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

Thursday 26 September 13

The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

package metric district property
nesting level color

class metric building
propertynumber of methods (NOM) height

number of attributes
(NOA)

width, length

Thursday 26 September 13

Welcome to ArgoUML City

ArgoUML City
pop. 2,522 classes, 143

packages

Thursday 26 September 13

Software Topology

Azureus City
pop. 4’500+ classes

Thursday 26 September 13

Software Topology

Azureus City
pop. 4’500+ classes

Thursday 26 September 13

Software Topology

Azureus City
pop. 4’500+ classes

Thursday 26 September 13

Crossing System Boundaries

Azureus ArgoUML

Thursday 26 September 13

Scalability?

Cincom Smalltalk City
pop. 8,000+ classes

Thursday 26 September 13

Mapping Metrics

identity
linear

boxplot-based
threshold-based

Thursday 26 September 13

Mapping Metrics

identity
linear

boxplot-based
threshold-based

Thursday 26 September 13

Mapping Metrics

identity
linear

boxplot-based
threshold-based

Thursday 26 September 13

Mapping Metrics

identity
linear

boxplot-based
threshold-based

Thursday 26 September 13

Mapping Metrics

identity
linear

boxplot-based
threshold-based

Thursday 26 September 13

http://www.inf.unisi.ch/phd/wettel/codecity.html

Released:
Mar 2008

Thursday 26 September 13

http://www.inf.unisi.ch/phd/wettel/codecity.html
http://www.inf.unisi.ch/phd/wettel/codecity.html

http://www.inf.unisi.ch/phd/wettel/codecity.html

Released:
Mar 2008 free

1300 +
downloads

Thursday 26 September 13

http://www.inf.unisi.ch/phd/wettel/codecity.html
http://www.inf.unisi.ch/phd/wettel/codecity.html

